中心在坐標(biāo)原點(diǎn),焦點(diǎn)在y軸上的橢圓,其一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的加線互相垂直,且此焦點(diǎn)與橢圓上的點(diǎn)之間的距離最小值為數(shù)學(xué)公式,則橢圓的標(biāo)準(zhǔn)方程為________.


分析:可設(shè)所求橢圓的標(biāo)準(zhǔn)方程為(a>b>0),由題意可得a-c=,a=c,從而可求其方程.
解答:設(shè)橢圓的標(biāo)準(zhǔn)方程為(a>b>0),
∵該橢圓的一個(gè)焦點(diǎn)與橢圓上的點(diǎn)之間的距離最小值為,
∴a-c=①,
又一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的加線互相垂直,
∴a=c②,
由①②可得a=,c=,
∴b2=a2-c2=5,
∴所求橢圓的標(biāo)準(zhǔn)方程為:
故答案為:
點(diǎn)評:本題考查橢圓的簡單性質(zhì)與橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵在于理解題意,得到關(guān)于a、c的關(guān)系式,著重考查待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)D為橢圓C的右頂點(diǎn),設(shè)A是橢圓上異于D的一動點(diǎn),作AD的垂線交橢圓與點(diǎn)B,求證:直線AB過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1、F2在x軸上,長軸A1A2的長為4,左準(zhǔn)線l與x軸的交點(diǎn)為M,
MA1
=2
A1F1

(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)M的直線l'與橢圓交于C、D兩點(diǎn),若
OC
OD
=0
,求直線l'的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,且經(jīng)過A(-2,0),B(1,
32
)
兩點(diǎn).
(1)求橢圓E的方程;
(2)若橢圓E的左、右焦點(diǎn)分別是F、H,過點(diǎn)H的直線l:x=my+1與橢圓E交于M、N兩點(diǎn),則△FMN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)已知橢圓G的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)為A(0,-1),離心率為
6
3

(I)求橢圓G的方程;
(II)設(shè)直線y=kx+m與橢圓相交于不同的兩點(diǎn)M,N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•延慶縣一模)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)B與拋物線x2=4y的焦點(diǎn)重合,離心率e=
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線l與橢圓交于M、N兩點(diǎn),且橢圓C的右焦點(diǎn)F恰為△BMN的垂心(三條高所在直線的交點(diǎn)),若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案