已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓C的標準方程;
(2)D為橢圓C的右頂點,設A是橢圓上異于D的一動點,作AD的垂線交橢圓與點B,求證:直線AB過定點,并求出該定點的坐標.
分析:(1)由題設條件可知
a+c=3
a-c=1
解得
a=2
c=1
,由此能夠推導出橢圓C的標準方程.
(2)設l:y=kx+m,由方程組
x
2
 
4
+
y2
3
=1
y=kx+m
消去y,得(3+4k2)x2+8kmx+4m2-12=0,然后結(jié)合題設條件利用根的判別式和根與系數(shù)的關(guān)系求解.
解答:解:(1)由題意設橢圓的標準方程為
x2
a2
+
y2
b2
=1(a>b>0)
,
a+c=3,a-c=1,a=2,c=1,b2=3,
x2
4
+
y2
3
=1

(2)設A(x1,y1),B(x2,y2),l:y=kx+m,
y=kx+m
x2
4
+
y2
3
=1
,得:(3+4k2)x2+8mkx+4(m2-3)=0,
△=64m2k2-16(3+4k2)(m2-3)>0,3+4k2-m2>0x1+x2=-
8mk
3+4k2
,x1x2=
4(m2-3)
3+4k2
y1y2=(kx1+m)•(kx2+m)=k2x1x2+mk(x1+x2)+m2=
3(m2-4k2)
3+4k2

∵AD⊥BD,kAD•kBD=-1,(或
AD
BD
=0

y1
x1-2
y2
x2-2
=-1
,y1y2+x1x2-2(x1+x2)+4=0,
3(m2-4k2)
3+4k2
+
4(m2-3)
3+4k2
+
16mk
3+4k2
+4=0
,7m2+16mk+4k2=0,
解得m1=-2k,m2=-
2k
7
,且滿足3+4k2-m2>0
當m=-2k時,l:y=k(x-2),直線過定點(2,0),與已知矛盾;
m=-
2k
7
時,l:y=k(x-
2
7
)
,直線過定點(
2
7
,0)

綜上可知,直線AB過定點,定點坐標為(
2
7
,0)
點評:本題綜合考查橢圓的性質(zhì)及應用和直線與橢圓的位置關(guān)系,具有較大的難度,解題時要注意的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,橢圓C任意一點P到兩個焦點F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求橢圓C的方程;
(2)設過(0,-2)的直線l與橢圓C交于A、B兩點,且
OA
OB
=0
(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,
32
)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2M⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上且過點P(
3
,
1
2
)
,離心率是
3
2

(1)求橢圓C的標準方程;
(2)直線l過點E(-1,0)且與橢圓C交于A,B兩點,若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•和平區(qū)一模)已知橢圓C的中心在坐標原點,焦點在x軸上,離心率為
1
2
,它的一個頂點恰好是拋物線y=
3
12
x2的焦點.
(I)求橢圓C的標準方程;
(II)若A、B是橢圓C上關(guān)x軸對稱的任意兩點,設P(-4,0),連接PA交橢圓C于另一點E,求證:直線BE與x軸相交于定點M;
(III)設O為坐標原點,在(II)的條件下,過點M的直線交橢圓C于S、T兩點,求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,它的一條準線為x=-
5
2
,離心率為
2
5
5

(1)求橢圓C的方程;
(2)過橢圓C的右焦點F作直線l交橢圓于A、B兩點,交y軸于M點,若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步練習冊答案