(2012•河南模擬)當(dāng)前人們普遍認(rèn)為拓展訓(xùn)練是挑戰(zhàn)極限、完善人格的訓(xùn)練.某大學(xué)生拓展訓(xùn)練中心著眼于大學(xué)生的實(shí)際情況,精心設(shè)計(jì)了總分為200分的若干相互獨(dú)立的拓展訓(xùn)練項(xiàng)目.隨機(jī)抽取某大學(xué)中文系和數(shù)學(xué)系各10名同學(xué)的拓展訓(xùn)練成績(jī)?nèi)绫恚?BR>
學(xué)號(hào) 1 2 3 4 5 6 7 8 9 10
數(shù)學(xué)系成績(jī) 182 170 171 178 179 179 162 163 168 158
中文系成績(jī) 181 170 173 176 162 165 166 168 169 159
(I)計(jì)算數(shù)學(xué)系這10名同學(xué)成績(jī)的樣本方差;
(Ⅱ)從中文系不高于166分的同學(xué)中抽取兩名進(jìn)行強(qiáng)化訓(xùn)練,求成績(jī)?yōu)?66分的同學(xué)被抽中的概率.
分析:(Ⅰ)先求出數(shù)學(xué)系這10名同學(xué)成績(jī)的平均值,再利用方差的定義求出它的方差即得;
(II)設(shè)“成績(jī)?yōu)?66分的同學(xué)被抽中”為事件A,中文系不高于166分的有4人,從而得到隨機(jī)抽取兩名同學(xué)的成績(jī)的基本事件數(shù),而事件A包含3個(gè)基本事件,最后根據(jù)古典概率的計(jì)算公式即可求出成績(jī)?yōu)?66分的同學(xué)被抽中的概率.
解答:解:(Ⅰ)可計(jì)算出
.
x
數(shù)學(xué)=
1
10
(182+170+171+178+179+179+162+163+168+158)=171,
S2數(shù)學(xué)=
1
10
[(182-171)2+(170-171)2+(171-171)2+(178-171)2+(179-171)2+(179-171)2+(162-171)2+(163-171)2+(168-171)2+(158-171)2]=62.
故數(shù)學(xué)系這10名同學(xué)成績(jī)的樣本方差為62.
(Ⅱ)設(shè)“成績(jī)?yōu)?66分的同學(xué)被抽中”為事件A,中文系不高于166分的有4人,
他們分別為:159,162,165,166.隨機(jī)抽取兩名同學(xué)的成績(jī)的基本事件有:
C
2
4
=6,
而事件A包含3個(gè)基本事件,
所以成績(jī)?yōu)?66分的同學(xué)被抽中的概率
3
6
=
1
2
點(diǎn)評(píng):本題主要考查平均數(shù)、方差的定義和求法,列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD為矩形,AD=2AB=2PA,E為PD的上一點(diǎn),且PE=2ED,F(xiàn)為PC的中點(diǎn).
(Ⅰ)求證:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)己知i為虛數(shù)單位,則
i
1+i
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,若c=2,b=
3
,A+C=3B,則sinC=
6
3
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=x2-4x+3,則使得函數(shù)f(x-1)單調(diào)遞減的一個(gè)充分不必要條件是x∈( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)選修4-5:不等式選講
設(shè)f(x)=2|x|-|x+3|.
(1)求不等式f(x)≤7的解集S;
(2)若關(guān)于x的不等式f(x)+|2t-3|≤0有解,求參數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案