【題目】已知拋物線的準(zhǔn)線為上一動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線的切線,切點(diǎn)分別為.

(I)求證:是直角三角形;

(II)軸上是否存在一定點(diǎn),使三點(diǎn)共線.

【答案】(I)證明見(jiàn)解析;(II)存在.

【解析】

(I)設(shè)出點(diǎn)M的坐標(biāo)以及切線方程,并將其與聯(lián)立消,利用,得到,結(jié)合韋達(dá)定理得到,即可證明是直角三角形;

(II)設(shè),由(I)可得,設(shè)出直線AB的方程與聯(lián)立消,結(jié)合韋達(dá)定理得到,解得,得到直線過(guò)定點(diǎn),即可證明軸上存在一定點(diǎn),使三點(diǎn)共線.

(I)由已知得直線的方程為,設(shè),切線斜率為,則切線方程為,將其與聯(lián)立消.所以,化簡(jiǎn)得,所以,所以.即是直角三角形.

(II)由I知時(shí),方程的根為

設(shè)切點(diǎn),則.因?yàn)?/span>,所以.

設(shè),與聯(lián)立消,則,所以,解得,所以直線過(guò)定點(diǎn).

軸上存在一定點(diǎn),使三點(diǎn)共線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知aR,命題p:“x[1,2],x2﹣a≥0”,命題q:“xR,x2+2ax+2﹣a=0”.

(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;

(2)若命題“pq”為真命題,命題“pq”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將余弦函數(shù)的圖象向右平移個(gè)單位后,再保持圖象上點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的一半,得到函數(shù)的圖象,下列關(guān)于的敘述正確的是( )

A. 最大值為,且關(guān)于對(duì)稱

B. 周期為,關(guān)于直線對(duì)稱

C. 上單調(diào)遞增,且為奇函數(shù)

D. 上單調(diào)遞減,且為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線與直線交于P點(diǎn).

)當(dāng)直線過(guò)P點(diǎn),且與直線平行時(shí),求直線的方程.

)當(dāng)直線過(guò)P點(diǎn),且原點(diǎn)O到直線的距離為1時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:

1)兩個(gè)焦點(diǎn)坐標(biāo)分別是,橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和等于10;

2)過(guò)點(diǎn),且與橢圓有相同的焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家的晚報(bào)在下午任何一個(gè)時(shí)間隨機(jī)地被送到,他們一家人在下午任何一個(gè)時(shí)間隨機(jī)地開(kāi)始晚餐.為了計(jì)算晚報(bào)在晚餐開(kāi)始之前被送到的概率,某小組借助隨機(jī)數(shù)表的模擬方法來(lái)計(jì)算概率,他們的具體做法是將每個(gè)1分鐘的時(shí)間段看作個(gè)體進(jìn)行編號(hào),編號(hào)為01,編號(hào)為02,依此類推,編號(hào)為90.在隨機(jī)數(shù)表中每次選取一個(gè)四位數(shù),前兩位表示晚報(bào)時(shí)間,后兩位表示晚餐時(shí)間,如果讀取的四位數(shù)表示的晚報(bào)晚餐時(shí)間有一個(gè)不符合實(shí)際意義,視為這次讀取的無(wú)效數(shù)據(jù)(例如下表中的第一個(gè)四位數(shù)7840中的78不符合晚報(bào)時(shí)間).按照從左向右,讀完第一行,再?gòu)淖笙蛴易x第二行的順序,讀完下表,用頻率估計(jì)晚報(bào)在晚餐開(kāi)始之前被送到的概率為  

7840 1160 5054 3139 8082 7732 5034 3682 4829 4052

4201 6277 5678 5188 6854 0200 8650 7584 0136 7655

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為實(shí)數(shù))有極值,且在處的切線與直線平行.

1)求實(shí)數(shù)的取值范圍;

2)是否存在實(shí)數(shù),使得函數(shù)的極小值為1,若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由;

3)設(shè)函數(shù) 試證明:上恒成立并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠家具車間造、型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張型型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張、型型桌子分別獲利潤(rùn)2千元和3千元.

(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出可行域;

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)上的最值;

(Ⅱ)試討論零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案