【題目】設函數(shù)的解析式滿足

1)求函數(shù)的解析式;

2)若在區(qū)間(1,+∞)單調遞增,求的取值范圍(只需寫出范圍,不用說明理由)。

3)當時,記函數(shù),求函數(shù)gx)在區(qū)間上的值域.

【答案】(1)(2)(3)

【解析】

1)根據(jù)整體思想x+1tt0),則xt1,代入即可得到答案;(2)利用單調性定義即可作出判斷(利用對勾函數(shù)的圖象亦可);3)根據(jù)題意判斷出函數(shù)gx)的奇偶性,根據(jù)(2)中函數(shù)的單調性,即可求出函數(shù)gx)在區(qū)間上的值域.

解:(1)設x+1=tt0),則x=t1,

2

3)∵,

gx)為偶函數(shù),

y=gx)的圖象關于y軸對稱,

又當時,由(2)知單調遞減,在單調遞增,

∴當a=1時,函數(shù)gx)在區(qū)間上的值域的為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx﹣ (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.

(1)求炮的最大射程;
(2)設在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某共享單車企業(yè)在城市就“一天中一輛單車的平均成本與租用單車數(shù)量之間的關系”進行了調查,并將相關數(shù)據(jù)統(tǒng)計如下表:

根據(jù)以上數(shù)據(jù),研究人員設計了兩種不同的回歸分析模型,得到兩個擬合函數(shù):

模型甲:,模型乙:.

(1)為了評價兩種模型的擬合效果,完成以下任務:

①完成下表(計算結果精確到0.1元)(備注:,稱為相應于點的殘差);

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

(2)這家企業(yè)在4城市投放共享單車后,受到廣大市民的熱烈歡迎并供不應求,于是該企業(yè)決定增加單車投放量.根據(jù)市場調查,市場投放量達到1萬輛時,平均每輛單車一天能收入7.2元;市場投放量達到1.2萬輛時,平均每輛單車一天能收入6.8元.若按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,問該企業(yè)投放量選擇1萬輛還是1.2萬輛能獲得更多利潤?請說明理由.(利潤收入成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .

【解析】試題分析】(I)利用的二階導數(shù)來研究求得函數(shù)的單調區(qū)間.(II) 由(Ⅰ)得上單調遞減,在上單調遞增,由此可知.利用導數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

試題解析】

(Ⅰ),

,則.

, ,∴上單調遞增,

從而得上單調遞增,又∵,

∴當時, ,當時,

因此, 的單調增區(qū)間為,單調減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調遞減,在上單調遞增,

由此可知.

, ,

.

,

.

∵當時, ,∴上單調遞增.

又∵,∴當時, ;當時, .

①當時, ,即,這時,

②當時, ,即,這時, .

綜上, 上的最大值為:當時, ;

時, .

[點睛]本小題主要考查函數(shù)的單調性,考查利用導數(shù)求最大值. 與函數(shù)零點有關的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調區(qū)間和極值點,并結合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉化為兩個函數(shù)圖象的交點問題.

型】解答
束】
22

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知B為線段MN上一點,|MN|=6,|BN|=2,動圓C與MN相切于點B,分別過M,N作圓C的切線,兩切線交于點P.求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:厘米)滿足關系:.若不建隔熱層,每年的能源消耗費用為萬元.為隔熱層建造費用與年的能源消耗費用之和.

1)求的值及的表達式;

2)隔熱層修建多厚時,總費用最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次數(shù)學測驗后,班級學委對選答題的選題情況進行統(tǒng)計,如下表:

幾何證

明選講

極坐標與

參數(shù)方程

不等式

選講

合計

男同學

12

4

6

22

女同學

0

8

12

20

合計

12

12

18

42

(1)在統(tǒng)計結果中,如果把幾何證明選講和極坐標與參數(shù)方程稱為“幾何類”,把不等式選講稱為“代數(shù)類”,我們可以得到如下2×2列聯(lián)表.

幾何類

代數(shù)類

合計

男同學

16

6

22

女同學

8

12

20

合計

24

18

42

能否認為選做“幾何類”或“代數(shù)類”與性別有關,若有關,你有多大的把握?

(2)在原始統(tǒng)計結果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選答題的同學中隨機選出7名同學進行座談.已知這名學委和2名數(shù)學課代表都在選做“不等式選講”的同學中.

①求在這名學委被選中的條件下,2名數(shù)學課代表也被選中的概率;

②記抽取到數(shù)學課代表的人數(shù)為,求的分布列及數(shù)學期望

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,的中點.

(1)證明:平面

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

同步練習冊答案