在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足S=(a2+b2-c2).
(Ⅰ)求角C的大;
(Ⅱ)求sinA+sinB的取值范圍.
【答案】分析:(Ⅰ)利用三角形的面積公式化簡已知等式的左邊,利用余弦定理表示出cosC,變形后代入等式的右邊,利用同角三角函數(shù)間的基本關(guān)系弦化切整理后求出tanC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù);
(Ⅱ)由C的度數(shù),利用三角形的內(nèi)角和定理表示出A+B的度數(shù),用A表示出B,代入所求的式子中,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡,合并后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),根據(jù)A的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的圖象與性質(zhì)得出此時(shí)正弦函數(shù)的值域,即可得到所求式子的范圍.
解答:解:(Ⅰ)∵S=absinC,cosC=,即a2+b2-c2=2abcosC,
∴S=(a2+b2-c2)變形得:absinC=×2abcosC,
整理得:tanC=,
又0<C<π,
則C=;                                    
(Ⅱ)∵C=,∴A+B=,即B=-A,
∴sinA+sinB=sinA+sin(-A)=sinA+cosA-sinA=cosA+sinA=sin(A+),
又0<A<,∴<A+,
<sin(A+)≤1,
則sinA+sinB的取值范圍為(,].
點(diǎn)評(píng):此題考查了三角形的面積公式,余弦定理,兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,熟練掌握公式及定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案