對于三次函數(shù),定義是函數(shù)的導(dǎo)函數(shù)。若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”。有同學(xué)發(fā)現(xiàn):任何一個三次函數(shù)既有拐點(diǎn),又有對稱中心,且拐點(diǎn)就是對稱中心。根據(jù)這一發(fā)現(xiàn),對于函數(shù),
則的值為 。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東猜題卷)對于三次函數(shù)。
定義:(1)設(shè)是函數(shù)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”;
定義:(2)設(shè)為常數(shù),若定義在上的函數(shù)對于定義域內(nèi)的一切實(shí)數(shù),都有成立,則函數(shù)的圖象關(guān)于點(diǎn)對稱。
己知,請回答下列問題:
(1)求函數(shù)的“拐點(diǎn)”的坐標(biāo)
(2)檢驗(yàn)函數(shù)的圖象是否關(guān)于“拐點(diǎn)”對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個三次函數(shù),使得它的“拐點(diǎn)”是(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對于三次函數(shù),定義:設(shè)是函數(shù)的導(dǎo)函數(shù)的導(dǎo)數(shù),若有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”,F(xiàn)已知,請解答下列問題:
(1)求函數(shù)的“拐點(diǎn)”A的坐標(biāo);
(2)求證的圖象關(guān)于“拐點(diǎn)”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關(guān)“拐點(diǎn)”的一個結(jié)論(此結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三10月質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:填空題
對于三次函數(shù),定義是函數(shù)的導(dǎo)函數(shù)。若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”。有同學(xué)發(fā)現(xiàn):任何一個三次函數(shù)既有拐點(diǎn),又有對稱中心,且拐點(diǎn)就是對稱中心。根據(jù)這一發(fā)現(xiàn),對于函數(shù),則 的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三11月練習(xí)數(shù)學(xué)試卷 題型:解答題
對于三次函數(shù).
定義:(1)設(shè)是函數(shù)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”;
定義:(2)設(shè)為常數(shù),若定義在上的函數(shù)對于定義域內(nèi)的一切實(shí)數(shù),都有成立,則函數(shù)的圖象關(guān)于點(diǎn)對稱.
己知,請回答下列問題:
(1)求函數(shù)的“拐點(diǎn)”的坐標(biāo)
(2)檢驗(yàn)函數(shù)的圖象是否關(guān)于“拐點(diǎn)”對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個三次函數(shù),使得它的“拐點(diǎn)”是(不要過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com