對于三次函數(shù),定義:設是函數(shù)的導函數(shù)的導數(shù),若有實數(shù)解,則稱點為函數(shù)的“拐點”,F(xiàn)已知,請解答下列問題:
(1)求函數(shù)的“拐點”A的坐標;
(2)求證的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明).
科目:高中數(shù)學 來源: 題型:
(09年山東猜題卷)對于三次函數(shù)。
定義:(1)設是函數(shù)的導數(shù)的導數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”;
定義:(2)設為常數(shù),若定義在上的函數(shù)對于定義域內(nèi)的一切實數(shù),都有成立,則函數(shù)的圖象關于點對稱。
己知,請回答下列問題:
(1)求函數(shù)的“拐點”的坐標
(2)檢驗函數(shù)的圖象是否關于“拐點”對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數(shù),使得它的“拐點”是(不要過程)
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇省高三10月質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:填空題
對于三次函數(shù),定義是函數(shù)的導函數(shù)。若方程有實數(shù)解,則稱點為函數(shù)的“拐點”。有同學發(fā)現(xiàn):任何一個三次函數(shù)既有拐點,又有對稱中心,且拐點就是對稱中心。根據(jù)這一發(fā)現(xiàn),對于函數(shù),則 的值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆安徽省高二下學期期末質(zhì)檢理科數(shù)學試卷(解析版) 題型:填空題
對于三次函數(shù),定義是的導函數(shù)的導函數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”,可以證明,任何三次函數(shù)都有“拐點”,任何三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,請你根據(jù)這一結論判斷下列命題:
①任意三次函數(shù)都關于點對稱:
②存在三次函數(shù)有實數(shù)解,點為函數(shù)的對稱中心;
③存在三次函數(shù)有兩個及兩個以上的對稱中心;
④若函數(shù),則,
其中正確命題的序號為 (把所有正確命題的序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年四川省自貢市高三下學期第三次診斷性檢測理科數(shù)學試卷(解析版) 題型:填空題
對于三次函數(shù),定義是的導函數(shù)的導函數(shù),若方程有實數(shù)解x0,則稱點為函數(shù)的“拐點”,可以發(fā)現(xiàn),任何三次函數(shù)都有“拐點”,任何三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,請你根據(jù)這一發(fā)現(xiàn)判斷下列命題:
①任意三次函數(shù)都關于點對稱:
②存在三次函數(shù)有實數(shù)解,點為的對稱中心;
③存在三次函數(shù)有兩個及兩個以上的對稱中心;
④若函數(shù),則,.
其中正確命題的序號為_______(把所有正確命題的序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三11月練習數(shù)學試卷 題型:解答題
對于三次函數(shù).
定義:(1)設是函數(shù)的導數(shù)的導數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”;
定義:(2)設為常數(shù),若定義在上的函數(shù)對于定義域內(nèi)的一切實數(shù),都有成立,則函數(shù)的圖象關于點對稱.
己知,請回答下列問題:
(1)求函數(shù)的“拐點”的坐標
(2)檢驗函數(shù)的圖象是否關于“拐點”對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數(shù),使得它的“拐點”是(不要過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com