設(shè)分別是橢圓的左、右焦點(diǎn),過的直線與橢圓相交于A,B兩點(diǎn),直線的傾斜角為,到直線的距離為.
(1)求橢圓的焦距;
(2)如果,求橢圓的方程.
(1)4
(2)
(1)設(shè)焦距為2c,由已知可得到直線的距離,故c=2,所以焦距為4.
(2)設(shè),由及直線的傾斜角為,知,直線的方程為,,得,解得
.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160416983477.gif" style="vertical-align:middle;" />,所以,即,解得,,,所以橢圓方程為:.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知圓的方程為,橢圓的方程,且離心率為,如果相交于兩點(diǎn),且線段恰為圓的直徑.
(Ⅰ)求直線的方程和橢圓的方程;
(Ⅱ)如果橢圓的左、右焦點(diǎn)分別是,橢圓上是否存在點(diǎn),使得,如果存在,請求點(diǎn)的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)軸上方橢圓上的一點(diǎn),且, ,
(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);
(Ⅱ)判斷以為直徑的圓與以橢圓的長軸為直徑的圓的位置關(guān)系;
(Ⅲ)若點(diǎn)是橢圓上的任意一點(diǎn),是橢圓的一個(gè)焦點(diǎn),探究以為直徑的圓與以橢圓的長軸為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
設(shè)分別為橢圓的左、右兩個(gè)焦點(diǎn).
(Ⅰ)若橢圓上的點(diǎn)兩點(diǎn)的距離之和等于4,
求橢圓的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動點(diǎn),。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點(diǎn)在軸上,長軸長是短軸長的兩倍,則m的值為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓的左焦點(diǎn)軸的垂線交橢圓于點(diǎn),為右焦點(diǎn),若,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的兩個(gè)焦點(diǎn),P是橢圓上的一點(diǎn),若的內(nèi)切圓半徑為1,則點(diǎn)P到x軸的距離為(  )
A.B.C.3D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程的曲線是焦點(diǎn)在軸上的橢圓,則的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是橢圓的兩個(gè)焦點(diǎn),過作直線與橢圓交于A,B兩點(diǎn),的周長為              

查看答案和解析>>

同步練習(xí)冊答案