一個袋中裝有若干個大小相同的黑球、白球和紅球,已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是.
(1)若袋中共有10個球,
①求白球的個數(shù);
②從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機(jī)變量X的分布列.
(2)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于,并指出袋中哪種顏色的球的個數(shù)最少.
(1) ①5 ②X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
(2)見解析
【解析】(1)①記“從袋中任意摸出2個球,至少得到1個白球”為事件A,設(shè)袋中白球的個數(shù)為x,則
P(A)=1-=,得x=5或x=14(舍去).故白球有5個.
②隨機(jī)變量X的取值為0,1,2,3,
P(X=0)==;P(X=1)==;
P(X=2)==;P(X=3)==.
故X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
(2)設(shè)袋中有n個球,其中有y個黑球,
由題意得y=n,所以2y<n,2y≤n-1,故≤.
記“從袋中任意摸出2個球,至少有1個黑球”為事件B,
則P(B)=
=·+·+·
=+×≤+×=.
所以白球的個數(shù)比黑球多,白球個數(shù)多于n,紅球的個數(shù)少于,故袋中紅球個數(shù)最少.
【方法技巧】隨機(jī)變量分布列的求法
(1)搞清隨機(jī)變量每個取值對應(yīng)的隨機(jī)事件,思考目標(biāo)事件如何用基本事件來表示,求出隨機(jī)變量所有可能的值.
(2)利用對立事件和互斥事件求出取每一個值時的概率,計算必須準(zhǔn)確無誤.
(3)注意運用分布列的兩條性質(zhì)檢驗所求概率,確保正確后列出分布列.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十六選修4-2第三節(jié)練習(xí)卷(解析版) 題型:解答題
已知矩陣M=,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0),
(1)求實數(shù)a的值.
(2)求矩陣M的特征值及其對應(yīng)的特征向量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十九選修4-5第一節(jié)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=|x-1|+|x+3|.
(1)求x的取值范圍,使f(x)為常數(shù)函數(shù).
(2)若關(guān)于x的不等式f(x)-a≤0有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:選擇題
已知回歸直線斜率的估計值為1.23,樣本點的中心為點(4,5),則回歸直線的方程為( )
(A)=1.23x+4
(B)=1.23x+5
(C)=1.23x+0.08
(D)=0.08x+1.23
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題
已知曲線C:ρsin(θ+)=,曲線P:ρ2-4ρcosθ+3=0,
(1)求曲線C,P的直角坐標(biāo)方程.
(2)設(shè)曲線C和曲線P的交點為A,B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:填空題
已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.設(shè)ξ為取出的4個球中紅球的個數(shù),則P(ξ=2)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)隨機(jī)變量ξ的概率分布為P(ξ=i)=a()i,i=1,2,3,則a的值是( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高中數(shù)學(xué)全國各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題
已知(,是常數(shù)),若對曲線上任意一點處的切線,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知集合,則集合中的元素個數(shù)為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com