過x軸上的動(dòng)點(diǎn)T(t,0),引拋物線y=x2+1兩條切線TP,TQ,P,Q為切點(diǎn).
(Ⅰ)求證:直線PQ過定點(diǎn)N,并求出定點(diǎn)N坐標(biāo);
(Ⅱ)若t≠0,設(shè)弦PQ的中點(diǎn)為M,試求S△OTM|OT|的最小值(O為坐標(biāo)原點(diǎn)).

【答案】分析:(Ⅰ)根據(jù)拋物線方程設(shè)出P,Q的坐標(biāo),把P,Q分別代入拋物線方程進(jìn)行求導(dǎo),可求得直線TP,TQ的斜率,進(jìn)而利用兩點(diǎn)表示出兩直線的斜率,建立等式整理后可推斷出x1,x2為方程x2-2tx-1=0的兩根,利用韋達(dá)定理可表示出x1+x2和x1x2,進(jìn)而利用點(diǎn)斜式表示出直線PQ的方程,整理后把x1+x2和x1x2的表達(dá)式代入,求得y=2tx+2,進(jìn)而可推斷出直線PQ恒過定點(diǎn)(0,2)
(Ⅱ)設(shè)出點(diǎn)M的坐標(biāo),進(jìn)而利用三角形面積公式表示出△OTM的面積,根據(jù)直線PQ恒過定點(diǎn)(0,2),設(shè)直線PQ方程,代入拋物線方程,整理后,利用韋達(dá)定理求得(x1+x2)=Kx1x2=-1.利用二次函數(shù)的性質(zhì)可k的值確定y的最小值,進(jìn)而確定S△OTM|OT|的最小值.
解答:解:(Ⅰ)設(shè)P(x1,x12+1),Q(x2,x22+1)
把P代入拋物線方程進(jìn)行求導(dǎo)得y'=2x1,即PT的斜率為2x1
=2x1,整理得x12-2tx1-1=0;同理可得x22-2tx2-1=0
∴x1,x2為方程x2-2tx-1=0的兩根
∴x1+x2=2t,x1x2=-1
直線PQ的方程:y-(x12+1)=(x-x1
整理得:y=(x1+x2)x-x1x2+1;即y=2tx+2
∴直線PQ恒過定點(diǎn)(0,2)

(Ⅱ)設(shè)點(diǎn)M坐標(biāo)為(x,y),則s△OTM:|OT|=,
由(Ⅰ)直線PQ過定點(diǎn)N(0,2),
設(shè)直線PQ方程為y=kx+2代入y=x2+1整理得x2-kx-1=0,
設(shè)p(x1,y1)Q(x1,y2),則(x1+x2)=Kx1x2=-1,y=k+2=
當(dāng)k=0時(shí),y最小值為:2,
所以s△OTM:|OT|最小值為:1.
點(diǎn)評(píng):本題主要考查了拋物線的應(yīng)用和直線與拋物線的關(guān)系.注重了學(xué)生分析推理和基本的計(jì)算能力的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)過x軸上的動(dòng)點(diǎn)T(t,0),引拋物線y=x2+1兩條切線TP,TQ,P,Q為切點(diǎn).
(Ⅰ)求證:直線PQ過定點(diǎn)N,并求出定點(diǎn)N坐標(biāo);
(Ⅱ)若t≠0,設(shè)弦PQ的中點(diǎn)為M,試求S△OTM|OT|的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(t,0)為x軸上的動(dòng)點(diǎn),過P作拋物線y=x2+1的兩條切線,切點(diǎn)分別為A、B
(1)求線段AB中點(diǎn)M的軌跡方程;
(2)求證:直線AB過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
(3)設(shè)△PAB的面積為S,求
S|OP|
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過x軸上的動(dòng)點(diǎn)T(t,0),引拋物線y=x2+1兩條切線TP,TQ,P,Q為切點(diǎn).
(Ⅰ)求證:直線PQ過定點(diǎn)N,并求出定點(diǎn)N坐標(biāo);
(Ⅱ)若t≠0,設(shè)弦PQ的中點(diǎn)為M,試求S△OTM|OT|的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省寧波市鄞州中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)P(t,0)為x軸上的動(dòng)點(diǎn),過P作拋物線y=x2+1的兩條切線,切點(diǎn)分別為A、B
(1)求線段AB中點(diǎn)M的軌跡方程;
(2)求證:直線AB過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
(3)設(shè)△PAB的面積為S,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案