(2013•靜安區(qū)一模)已知f(x)=log
1
2
x
,當(dāng)點(diǎn)M(x,y)在y=f(x)的圖象上運(yùn)動(dòng)時(shí),點(diǎn)N(x-2,ny)在函數(shù)y=gn(x)的圖象上運(yùn)動(dòng)(n∈N*).
(1)求y=gn(x)的表達(dá)式;
(2)若方程g1(x)=g2(x-2+a)有實(shí)根,求實(shí)數(shù)a的取值范圍;
(3)設(shè)Hn(x)=2gn(x),函數(shù)F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域?yàn)?span id="16pnhct" class="MathJye">[log2
52
b+2
,log2
42
a+2
],求實(shí)數(shù)a,b的值.
分析:(1)根據(jù)點(diǎn)M(x,y)在y=f(x)的圖象上運(yùn)動(dòng)可得y=log2x,點(diǎn)N(x-2,ny)函數(shù)y=gn(x)的圖象上運(yùn)動(dòng)可得 gn(x-2)=ny故 gn(x-2)=nlog2x(x>0)再用x+2代x即可求出y=gn(x)的表達(dá)式.
(2)由(1)可得要使關(guān)于x的方程 g1(x)=g2(x-2+a)有實(shí)根,a∈R,可得:(x+2)2=x+a在x>-2有實(shí)根即a=(x+2)2-x在x>-2有實(shí)根即只需求出(x+2)2-x在x>-2的范圍即為a的范圍.
(3)由(1)可得F(x)=
1
x+2
+log 
1
2
(x+2)(x>-2)再根據(jù))
1
x+2
和log 
1
2
(x+2)的單調(diào)性得出F(x)的單調(diào)性,從而可求出F(x)在[a.b]的值域再利用值域?yàn)?span id="f84pyd0" class="MathJye">[log2
52
b+2
,log2
42
a+2
]可列出等式求出a,b的值.
解答:解:(1)由
y=f(x)
ny=gn(x-2)
,
gn(x-2)=nf(x)=nlog
1
2
x
,
所以gn(x)=nlog
1
2
(x+2)
,(x>-2).(4分)
(2)log
1
2
(x+2)=2log
1
2
(x+a)
,
x+2
=x+a
(x+2>0)(6分)
a=-x+
x+2
,令t=
x+2
>0
,
所以a=-t2+t+2≤
9
4
,
當(dāng)x=-
7
4
時(shí),a=
9
4

即實(shí)數(shù)a的取值范圍是(-∞,
9
4
]
(10分)
(3)因?yàn)?span id="7yr9uag" class="MathJye">Hn(x)=2nlog
1
2
(x+2)
=
1
(x+2)n
,
所以F(x)=
1
x+2
+log
1
2
(x+2)
.F(x)在(-2,+∞)上是減函數(shù).(12分)
所以
F(a)=log2
42
a+2
F(b)=log2
52
b+2

1
a+2
+log
1
2
(a+2)=log2
42
a+2
1
b+2
+log
1
2
(b+2)=log2
52
b+2
,
所以
a=2
b=3
(16分)
點(diǎn)評(píng):本題主要考查了求函數(shù)的解析式以及求利用函數(shù)的單調(diào)性求函數(shù)的值域.解題的關(guān)鍵是首先要利用點(diǎn)M點(diǎn)N所滿足的關(guān)系式求出y=gn(x)的表達(dá)式(這種方法也叫相關(guān)點(diǎn)法求函數(shù)的解析式)然后作為橋梁再求解第二問(wèn),而對(duì)于第二問(wèn)要求a的范圍常采用將a解出來(lái)轉(zhuǎn)化為球已知函數(shù)的值域問(wèn)題.第三問(wèn)是在第一問(wèn)的基礎(chǔ)上求出F(x)然后利用其單調(diào)性求其值域.因此第一問(wèn)為下面兩問(wèn)做了鋪墊股第一問(wèn)的正確解答就顯得尤為重要了!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)已知O是△ABC外接圓的圓心,A、B、C為△ABC的內(nèi)角,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m•
AO
,則m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)設(shè)P是函數(shù)y=x+
2
x
(x>0)的圖象上任意一點(diǎn),過(guò)點(diǎn)P分別向直線y=x和y軸作垂線,垂足分別為A、B,則
PA
PB
的值是
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)已知函數(shù)f(x)=
1
2
sin(2ax+
7
)的最小正周期為4π,則正實(shí)數(shù)a=
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)等比數(shù)列{an}(n∈N*)中,若a2=
1
16
,a5=
1
2
,則a12=
64
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)兩條直線l1:3x-4y+9=0和l2:5x+12y-3=0的夾角大小為
arccos
33
65
arccos
33
65

查看答案和解析>>

同步練習(xí)冊(cè)答案