16.若z=mx+y在平面區(qū)域$\left\{\begin{array}{l}2x-y≥0\\ 2y-x≥0\\ x+y-3≤0\end{array}\right.$上取得最小值時(shí)的最優(yōu)解不唯一,則z的最大值是( 。
A.-3B.0C.$\frac{1}{2}$D.$\frac{3}{2}$

分析 由題意z=mx+y在平面區(qū)域最小值時(shí)的最優(yōu)解不唯一,可知mx+y=0直線與2y-x=0直線平行.可得m=-$\frac{1}{2}$,利用數(shù)形結(jié)合即可得z的最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域,
z=mx+y在平面區(qū)域最小值時(shí)的最優(yōu)解不唯一,
可知mx+y=0直線與2y-x=0直線平行.
可得m=-$\frac{1}{2}$,
那么z=$-\frac{1}{2}$x+y.
則直線y=$\frac{1}{2}x+z$.如圖,平移直線y=$\frac{1}{2}x+z$,
由圖象可知當(dāng)直線y=$\frac{1}{2}x+z$經(jīng)過點(diǎn)A(1,2)時(shí),直線y=$\frac{1}{2}x+z$的截距最大,
此時(shí)z最大,zmax=$-\frac{1}{2}×1+2$=$\frac{3}{2}$.
故選D.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=e,則f(x2)=( 。
A.e2B.eC.$\sqrt{e}$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦點(diǎn);
②在平面內(nèi),設(shè)A,B為兩個(gè)定點(diǎn),P為動點(diǎn),且|PA|+|PB|=k,其中常數(shù)k為正實(shí)數(shù),則動點(diǎn)P的軌跡為橢圓;
③方程2x2-x+1=0的兩根可分別作為橢圓和雙曲線的離心率;
④已知P是雙曲線$\frac{x^2}{64}-\frac{y^2}{36}=1$上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),若|PF1|=17,則|PF2|的值為33.
其中真命題的序號為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.實(shí)數(shù)x大于$\sqrt{10}$,用不等式表示為( 。
A.$x<\sqrt{10}$B.$x≤\sqrt{10}$C.$x>\sqrt{10}$D.$x≥\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=sinx+cos2x的值域是[-2,$\frac{9}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={0,1,2},集合N={y|y=2x,x∈M},則( 。
A.M∩N={0,2}B.M∪N={0,2}C.M⊆ND.M?N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是公差不為零的等差數(shù)列a1=1,且a1,a2,a5成等比數(shù)列,{bn}為等比數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn,${S_3}=\frac{13}{3}$,q=3.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的焦點(diǎn)是F1、F2,且點(diǎn)P是雙曲線上的一點(diǎn),若∠F1PF2=60°,求三角形F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函數(shù)f(x)=$\left\{{\begin{array}{l}{x+\frac{1}{2},x∈A}\\{2(1-x),x∈B}\end{array}}$,若f(f(x0))∈A,則x0的取值范圍是$(\frac{1}{4},\frac{5}{8})$.

查看答案和解析>>

同步練習(xí)冊答案