如果對于函數(shù)f(x)定義域內(nèi)任意的x,都f(x)≥M(M為常數(shù)),稱M為f(x)的下界,下界M中的最大值叫做f(x)的下確界.下列函數(shù)中,有下確界的函數(shù)是( )
①f(x)=sinx  ②f(x)=lgx  ③f(x)=ex ④f(x)=
A.①②
B.①③
C.②③④
D.①③④
【答案】分析:本題考查的是函數(shù)的最值問題.在解答的過程當中,要先充分體會題目所給的新定義含義,然后針對所給的四個函數(shù)逐一進行驗證即可.解答時要充分利用好函數(shù)的性質(zhì)求解相應函數(shù)的最小值.
解答:解:對f(x)=sinx≥-1 在R上恒成立,所以此函數(shù)有下確界;
對f(x)=lgx∈R在(0,+∞)上恒成立,所以此函數(shù)無下確界;
對f(x)=ex∈(0,+∞)在R上恒成立,所以此函數(shù)有下確界;
對f(x)=∈{-1,0,1}在(0,+∞)上恒成立,所以此函數(shù)有下確界;
綜上可知①③④對應的函數(shù)都有下確界.
故選D.
點評:本題考查的是函數(shù)的最值和新定義相聯(lián)系的綜合類問題.在解答的過程當中充分體現(xiàn)了新定義問題的特點、問題轉(zhuǎn)化的思想以及函數(shù)求最值的方法.值得同學們體會反思.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果對于函數(shù)f(x)的定義域內(nèi)任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數(shù)f(x)是定義域上的“平緩函數(shù)”.
(1)判斷函數(shù)f(x)=x2-x,x∈[0,1]是否是“平緩函數(shù)”;
(2)若函數(shù)f(x)是閉區(qū)間[0,1]上的“平緩函數(shù)”,且f(0)=f(1).證明:對于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
12
成立.
(3)設a、m為實常數(shù),m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數(shù)”,試估計a的取值范圍(用m表示,不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、如果對于函數(shù)f(x)定義域內(nèi)任意的兩個自變量的值x1,x2,當x1<x2時,都有f(x1)≤f(x2),且存在兩個不相等的自變量值y1,y2,使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴格的增函數(shù),已知函數(shù)g(x)的定義域、值域分別為A、B,A=1,2,3,B⊆A,且g(x)為定義域A上的不嚴格的增函數(shù),那么這樣的g(x)共有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果對于函數(shù)f(x)的定義域內(nèi)的任意x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數(shù)f(x)是定義域上的“平緩函數(shù)”.
(1)判斷函數(shù)f(x)=x2-x,x∈[0,1]是否是“平緩函數(shù)”?
(2)若函數(shù)f(x)是閉區(qū)間[0,1]上的“平緩函數(shù)”,且f(0)=f(1).證明:對任意的x,x2∈[0,1]都有|f(x1)-f(x2)|≤
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果對于函數(shù)f(x)定義域內(nèi)任意的x,都有f(x)≥M(M為常數(shù)),稱M為f(x)的下界,下界M中的最大值叫做f(x)的下確界.定義在[1,e]上的函數(shù)f(x)=2x-1+lnx的下確界M=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.如果對于函數(shù)f(x)的所有上界中有一個最小的上界,就稱其為函數(shù)f(x)的上確界.已知函數(shù)f(x)=1+a•(
1
2
)x+(
1
4
)x
g(x)=
1-m•2x
1+m•2x

(1)當a=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍;
(3)若m>0,求函數(shù)g(x)在[0,1]上的上確界T(m).

查看答案和解析>>

同步練習冊答案