【題目】已知拋物線,焦點為,點在拋物線上,且的距離比到直線的距離小1.

(1)求拋物線的方程;

(2)若點為直線上的任意一點,過點作拋物線的切線,切點分別為,求證:直線恒過某一定點.

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)拋物線定義可得直線為拋物線的準線,即得,(2)關鍵求出直線AB方程,先設切點的坐標,利用導數(shù)幾何意義可得切線斜率,進而根據(jù)點斜式可得切線方程,求兩切線方程交點可得點坐標,由于在直線上,所以可得.最后聯(lián)立AB方程與拋物線方程,利用韋達定理得,即得直線恒過定點.

試題解析:(1)因為的距離與到直線的距離相等,由拋物線定義知,直線為拋物線的準線,所以,得,所以拋物線的方程為.

(2)設切點的坐標分別為,由(1)知, .

則切線的斜率分別為,,

故切線 的方程分別為, ,

聯(lián)立以上兩個方程,得的坐標為.

因為點在直線上,所以,即.

設直線的方程為,代入拋物線方程,得,所以,即,所以.

的方程為,故直線恒過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin( x+φ),x∈R,A>0,0<φ< .y=f(x)的部分圖象如圖所示,P、Q 分別為該圖象的最高點和最低點,點P的坐標為(1,A).點R的坐標為(1,0),∠PRQ=

(1)求f(x)的最小正周期以及解析式.
(2)用五點法畫出f(x)在x∈[﹣ , ]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在下列四個正方體中,為正方體的兩個頂點,為所在棱的中點,則在這四個正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實數(shù))的圖像在點處的切線方程為.

(1)求實數(shù)的值及函數(shù)的單調區(qū)間;

(2)設函數(shù),證明時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一個骰子先后拋擲兩次,事件表示:“第一次出現(xiàn)奇數(shù)點”,事件表示“第二次的點數(shù)不小于5”,則__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏。將中學組和大學組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨即從中抽取了100名選手進行調查,下面是根據(jù)調查結果繪制的選手等級人數(shù)的條形圖.

(Ⅰ)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認為選手成績“優(yōu)秀”與文化程度有關?

注:其中.

(Ⅱ)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調區(qū)間與極值;

(2)當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:區(qū)域A是正方形OABC(含邊界),區(qū)域B是三角形ABC(含邊界)。

(Ⅰ)向區(qū)域A隨機拋擲一粒黃豆,求黃豆落在區(qū)域B的概率;

(Ⅱ)若x,y分別表示甲、乙兩人各擲一次骰子所得的點數(shù),求點(x,y)落在區(qū)域B的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程,其左焦點、上頂點和左頂點分別為, ,坐標原點為,且線段 , 的長度成等差數(shù)列.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若過點的一條直線交橢圓于點, ,交軸于點,使得線段被點, 三等分,求直線的斜率.

查看答案和解析>>

同步練習冊答案