若f(log
1
2
x
)=4x+2,則f(2)的值為
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)log
1
2
x=t
,則x=(
1
2
)t
,由此得到f(t)=4(
1
2
t+2,從而能求出f(2)的值.
解答: 解:設(shè)log
1
2
x=t
,則x=(
1
2
)t

∵f(log
1
2
x
)=4x+2,∴f(t)=4(
1
2
t+2,
∴f(2)=4×(
1
2
)2
+2=3.
故答案為:3.
點(diǎn)評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意換元法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx(sinx+cosx).
(Ⅰ)求f(
π
8
)的值;
(Ⅱ)若函數(shù)f(x)在[0,a]上的值域?yàn)閇0,
1+
2
2
],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某人想制造一個(gè)支架,它由四根金屬桿PH,HA,HB,HC構(gòu)成,其底端三點(diǎn)A,B,C均勻地固定在半徑為3m的圓O上(圓O在地面上),P,H,O三點(diǎn)相異且共線,PO與地面垂直.現(xiàn)要求點(diǎn)P到地面的距離恰為3
3
m,記用料總長為L=PH+HA+HB+HC,設(shè)∠HAO=θ.
(1)試將L表示為θ的函數(shù),并注明定義域;
(2)當(dāng)θ的正弦值是多少時(shí),用料最省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差為d,若a1,a2,a3,a4,a5的方差為8,則d的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(2,1)且斜率為2的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行六面體ABCD-A1B1C1D1中,已知AB=AD=1,AA1=2,∠A1AD=∠A1AB=
π
3
,∠BAD=
π
2
,則線段AC1的長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2+ax+b=0(a>0)的兩根的平方和為4,兩根之積為
2
3
,則a值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有大小相同的白球4個(gè),紅球2個(gè),從中不放回地任取2個(gè),至少取到1個(gè)紅球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四面體A-BCD中,AB=AD=CD=1,BD=
2
,BD⊥CD,平面ABD⊥平面BCD,若四面體A-BCD頂點(diǎn)在同一個(gè)球面上,則該球的體積為( 。
A、
3
2
π
B、3π
C、
2
3
π
D、2π

查看答案和解析>>

同步練習(xí)冊答案