已知數(shù)列{an}的前n項(xiàng)和Sn=n2
(1)求數(shù)列{an}的通項(xiàng)公式,并證明{an}為等差數(shù)列;
(2)記bn=
1
anan+1
,Tn=b1+b2+…+bn,若?n∈N*,Tn>m,求m的取值范圍.
考點(diǎn):數(shù)列與不等式的綜合,等差關(guān)系的確定
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)數(shù)列{an}的前n項(xiàng)和Sn,表示出數(shù)列{an}的前n-1項(xiàng)和Sn-1,兩式相減即可求出此數(shù)列的通項(xiàng)公式,然后把n=1代入也滿足,故此數(shù)列為等差數(shù)列,求出的an即為通項(xiàng)公式;
(2)利用裂項(xiàng)法求和,再根據(jù)數(shù)列的單調(diào)性,即可求m的取值范圍.
解答: 解:(1)當(dāng)n=1時(shí),S1=12=1,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-(n-1)2=2n-1,
又n=1時(shí),a1=2-1=1,滿足通項(xiàng)公式,
∴此數(shù)列為等差數(shù)列,其通項(xiàng)公式為an=2n-1;…4分
∵an+1-an=2,
∴{an}為等差數(shù)列;…6分
(2)bn=
1
anan+1
=
1
2
1
2n-1
-
1
2n+1
),
Tn=b1+b2+…+bn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
),…10分
Tn=
1
2
(1-
1
2n+1
)
在n∈N*上單調(diào)遞增,所以n=1時(shí)(Tn)min=
1
3

∴m的取值范圍是(-∞,
1
3
)
…14分.
點(diǎn)評(píng):此題考查了等差數(shù)列的通項(xiàng)公式,考查裂項(xiàng)法,靈活運(yùn)用an=Sn-Sn-1求出數(shù)列的通項(xiàng)公式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知ω=-
1
2
+
3
2
i
,集合A={z|z=1+ω+ω2+…+ωn,n∈N*},集合B={x|x=z1•z2,z1、z2∈A}(z1可以等于z2),
則集合B的子集個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi)與復(fù)數(shù)z=
5i
1+2i
所對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱的點(diǎn)為A,則A對(duì)應(yīng)的復(fù)數(shù)為( 。
A、1+2iB、1-2i
C、-2+iD、2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{x∈N|x-3<2},用列舉法表示是( 。
A、{0,1,2,3,4}
B、{1,2,3,4}
C、{0,1,2,3,4,5}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD中,底面ABCD是菱形,其對(duì)角線的交點(diǎn)為O,且SA=SC,SA⊥BD.
(1)求證:SO⊥平面ABCD;
(2)設(shè)BAD=60°,AB=SD=2,P是側(cè)棱SD上的一點(diǎn),且SB∥平面APC,求三棱錐A-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為橢圓
x2
a2
+
y2
b2
=1的左、右焦點(diǎn),直線l:x=1過橢圓C的右焦點(diǎn)F2且與橢圓C在x軸上方的交點(diǎn)為M,若
MF1
MF2
=
9
4

(1)求橢圓C的方程;
(2)以M為圓心的動(dòng)圓與x軸分別交于兩點(diǎn)A B,延長(zhǎng)MA,MB分別交橢圓C于D、E兩點(diǎn),試判斷直線DE的斜率是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:
x=1+t
y=
3
t
(t為參數(shù)),曲線C1
x=2cosθ
y=2sinθ
(θ為參數(shù)).
(1)設(shè)l與C1相交于A、B兩點(diǎn),求|AB|的值;
(2)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的
1
4
,縱坐標(biāo)壓縮為原來的
3
4
,得到曲線C2,設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
1b
c2
有特征值λ1=4及對(duì)應(yīng)的一個(gè)特征向量
e1
=
2
3

(1)求矩陣M;
(2)寫出矩陣M的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=(x-a)2lnx,a∈R.
(1)x=e是y=f(x)極值點(diǎn),求a.
(2)求a范圍使得對(duì)任意x∈(0,3e]恒有f(x)≤4e2

查看答案和解析>>

同步練習(xí)冊(cè)答案