以下四個關(guān)于圓錐曲線的命題中:

①設(shè)A、B為兩個定點,k為非零常數(shù),||-||=k,則動點P的軌跡為雙曲線;

②過定圓C上一定點A作該圓的動弦AB,O為坐標(biāo)原點,若=(+),則動點P的軌跡為橢圓;

③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;

④雙曲線=1與橢圓=1有相同的焦點.

其中真命題的序號為_________.(寫出所有真命題的序號)

③④

解析:據(jù)雙曲線的定義否定①;

以C為原點,半徑為r的圓,設(shè)A(r,0),B(x0,y0),圓C方程為x2+y2=r2,P(x,y),則=(+),(x,y)=(r+x0,y0),得

∴(2x-r)2+(2y)2=r2,

即(x-)2+y2=()2.否定②;

由2x2-5x+2=(2x-1)(x-2)=0,得x=或x=2,肯定③;

=1,得焦點F1(,0),F2(-,0).

+y2=1,得焦點F1′(,0),F2(-,0),肯定④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中
①設(shè)A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k,則動點P的軌跡為雙曲線;
②設(shè)定圓C上一定點A作圓的動點弦AB,O為坐標(biāo)原點,若
OP
=
1
2
OA
+
OB
),則動點P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點.
其中真命題的序號為
 
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k
,則動點P的軌跡為雙曲線;
②以定點A為焦點,定直線l為準(zhǔn)線的橢圓(A不在l上)有無數(shù)多個;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④過原點O任做一直線,若與拋物線y2=3x,y2=7x分別交于A、B兩點,則
OA
OB
為定值.
其中真命題的序號為
 
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點,k為正常數(shù),|
PA
|+|
PB
|=k
,則動點P的軌跡為橢圓;
②雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率,則0<a<3;
④和定點A(5,0)及定直線l:x=
25
4
的距離之比為
5
4
的點的軌跡方程為
x2
16
-
y2
9
=1

其中真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k
,則動點P的軌跡為雙曲線;
②過定圓C上一定點A作圓的動點弦AB,O為坐標(biāo)原點,若
OP
=
1
2
(
OA
+
OB
)
,則動點P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
35
-y2=1
和橢圓
x2
25
+
y2
9
=1
有相同的焦點.
其中真命題的序號為
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①雙曲線
x2
16
-
y2
9
=1
與橢圓
x2
49
+
y2
24
=1
有相同的焦點;
②在平面內(nèi),設(shè)A、B為兩個定點,P為動點,且|PA|+|PB|=k,其中常數(shù)k為正實數(shù),則動點P的軌跡為橢圓;
③方程2x2-3x+1=0的兩根可分別作為橢圓和雙曲線的離心率;
④過雙曲線x2-
y2
2
=1
的右焦點F作直線l交雙曲線于A、B兩點,若|AB|=4,則這樣的直線l有且僅有3條.
其中真命題的序號為
①④
①④
(寫出所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案