已知各項均為正數(shù)的等差數(shù)列{an}的前20項和為100,那么a2•a19的最大值是(  )
A、50
B、25
C、100
D、4
5
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)和求和公式易得a2+a19=10,由基本不等式可得a2•a19≤(
a2+a19
2
2=25,驗證等號成立即可.
解答: 解:∵各項均為正數(shù)的等差數(shù)列{an}的前20項和為100,
∴S20=
20(a1+a20)
2
=100,∴a1+a20=10,
由等差數(shù)列的性質(zhì)可得a2+a19=a1+a20=10,
∴由基本不等式可得a2•a19≤(
a2+a19
2
2=25,
當且僅當a2=a19=5時,a2•a19取到最大值25,
故選:B
點評:本題考查等差數(shù)列的性質(zhì)和求和公式,涉及基本不等式求最值,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足2Sn=an2+an(n∈N*),等比數(shù)列{bn}滿足b1=
1
2
,bn+1+bn=
3
2n+1
(n∈N*).
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)若i,j為正整數(shù),且1≤i≤j≤n,求所有可能的乘積aibj的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log2x+x-2在(k,k+1)上有零點,則整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,an<0,前n項和Sn=-
1
4
(an-1)2

(1)求數(shù)列{an}的通項公式;
(2)設bn=
1
n(3-an)
(n∈N+),Tn=b1+b2+…+bn,若對任意n∈N+,總存在m∈[-1,1]使Tn<m2-2m+t+
1
2
成立,求出t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S3=3,S6=15,則S9=( 。
A、27B、36C、44D、54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結(jié)論中是錯誤命題的是( 。
A、命題p:“?x∈R,x2-2≥0”的否定形式為¬p:“?x∈R,x2-2<0”
B、若¬p是q的必要條件,則p是¬q的充分條件
C、“M>N”是“(
2
3
M>(
2
3
N”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-2x+1.
(1)當x∈[1,2]時,f(x)>0恒成立,求實數(shù)a的取值范圍;
(2)若函數(shù)g(x)=|f(x)|(a≥0)在[1,2]上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=
[x]
x
-a(x≠0)有且僅有3個零點,則a的取值范圍是( 。
A、[
3
4
,
4
5
]∪[
4
3
,
3
2
]
B、(
3
4
,
4
5
]∪[
4
3
,
3
2
C、(
1
2
2
3
]∪[
5
4
,
3
2
D、[
1
2
,
2
3
]∪[
5
4
,
3
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中是奇函數(shù),且在(0,+∞)上單調(diào)遞增的是(  )
A、y=
1
x
B、y=|x|
C、y=2x
D、y=x3

查看答案和解析>>

同步練習冊答案