【題目】運(yùn)貨卡車(chē)以每小時(shí)x千米的速度勻速行駛130千米(50≤x≤100)(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油(2+ )升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車(chē)總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車(chē)的總費(fèi)用最低,并求出最低費(fèi)用的值.

【答案】
(1)解:行車(chē)所用時(shí)間為

根據(jù)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油(2+ )升,司機(jī)的工資是每小時(shí)14元,可得行車(chē)總費(fèi)用:

y= = (50≤x≤100)


(2)解:y= ≥26 ,當(dāng)且僅當(dāng) ,即 時(shí),等號(hào)成立

∴當(dāng) 時(shí),這次行車(chē)的總費(fèi)用最低,最低費(fèi)用為


【解析】(1)求出車(chē)所用時(shí)間,根據(jù)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油(2+ )升,司機(jī)的工資是每小時(shí)14元,可得行車(chē)總費(fèi)用;(2)利用基本不等式,即可求得這次行車(chē)的總費(fèi)用最低.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解一個(gè)英語(yǔ)教改實(shí)驗(yàn)班的情況,舉行了一次測(cè)試,將該班30位學(xué)生的英語(yǔ)成績(jī)進(jìn)行統(tǒng)計(jì),得圖示頻率分布直方圖,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求出該班學(xué)生英語(yǔ)成績(jī)的眾數(shù),平均數(shù)及中位數(shù);
(2)從成績(jī)低于80分的學(xué)生中隨機(jī)抽取2人,規(guī)定抽到的學(xué)生成績(jī)?cè)赱50,60)的記1績(jī)點(diǎn)分,在[60,80)的記2績(jī)點(diǎn)分,設(shè)抽取2人的總績(jī)點(diǎn)分為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分10分)設(shè)個(gè)正數(shù)滿(mǎn)足).

(1)當(dāng)時(shí),證明:

(2)當(dāng)時(shí),不等式也成立,請(qǐng)你將其推廣到個(gè)正數(shù)的情形,歸納出一般性的結(jié)論并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cos2x, sinx), =(1,cosx),函數(shù)f(x)=2 +m,且當(dāng)x∈[0, ]時(shí),f(x)的最小值為2.
(1)求m的值,并求f(x)圖象的對(duì)稱(chēng)軸方程;
(2)設(shè)函數(shù)g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的700個(gè)零件進(jìn)行抽樣測(cè)試,先將700個(gè)零件進(jìn)行編號(hào)001,002,…,699,700.從中抽取70個(gè)樣本,如圖提供隨機(jī)數(shù)表的第4行到第6行,若從表中第5行第6列開(kāi)始向右讀取數(shù)據(jù),則得到的第5個(gè)樣本編號(hào)是(

A.607
B.328
C.253
D.007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果把直角三角形的三邊都增加同樣的長(zhǎng)度,則這個(gè)新的三角形的形狀為(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.由增加的長(zhǎng)度決定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓,點(diǎn)B是其下頂點(diǎn),過(guò)點(diǎn)B的直線(xiàn)交橢圓C于另一點(diǎn)A(A點(diǎn)在軸下方),且線(xiàn)段AB的中點(diǎn)E在直線(xiàn)上.

(1)求直線(xiàn)AB的方程;

(2)若點(diǎn)P為橢圓C上異于A、B的動(dòng)點(diǎn),且直線(xiàn)AP,BP分別交直線(xiàn)于點(diǎn)M、N,證明:OM·ON為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ +1(a>0,ω>0)的最大值為3,最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)若f(θ)= ,求sin(4θ+ )的值.
(3)若存在區(qū)間[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6個(gè)零點(diǎn),在滿(mǎn)足上述條件的[a,b]中,求b﹣a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某商業(yè)中心O有通往正東方向和北偏東30方向的兩條街道,某公園P位于商業(yè)中心北偏東角(),且與商業(yè)中心O的距離為公里處,現(xiàn)要經(jīng)過(guò)公園P修一條直路分別與兩條街道交匯于AB兩處。

1)當(dāng)AB沿正北方向時(shí),試求商業(yè)中心到AB兩處的距離和;

2)若要使商業(yè)中心OA,B兩處的距離和最短,請(qǐng)確定A,B的最佳位置。

查看答案和解析>>

同步練習(xí)冊(cè)答案