設(shè)實數(shù)x,y滿足3≤xy2≤8,4≤
x2
y
≤9,則
x3
y4
的最大值是(  )
分析:分析題目由實數(shù)x,y滿足條件3≤xy2≤8,4≤
x2
y
≤9.可把所求的式子利用已知的兩個式的四則運算表示,然后利用不等式的性質(zhì)即可求解.
解答:解:∵3≤xy2≤8,4≤
x2
y
≤9,
16≤(
x2
y
)2≤81
1
8
1
xy2
1
3

(
x2
y
)2
1
xy2
∈[2,27]

x3
y4
=(
x2
y
)2•(xy2)-1

x3
y4
∈[2,27]
即最大值為27
故選A
點評:此題主要考查不等式的基本性質(zhì)和等價轉(zhuǎn)化思想,等價轉(zhuǎn)換思想在考試中應用不是很廣泛,但是對于特殊題目能使解答更簡便,也需要注意.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)實數(shù)x,y滿足3≤xy2≤8,4≤
x2
y
≤9,則
x3
y4
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇 題型:填空題

設(shè)實數(shù)x,y滿足3≤xy2≤8,4≤
x2
y
≤9,則
x3
y4
的最大值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省新余市新鋼中學高三(上)第三次考試數(shù)學試卷(解析版) 題型:填空題

設(shè)實數(shù)x,y滿足3≤xy2≤8,4≤≤9,則的最大值是   

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省漣源一中、雙峰一中高三(下)第五次月考數(shù)學試卷(理科)(解析版) 題型:解答題

設(shè)實數(shù)x,y滿足3≤xy2≤8,4≤≤9,則的最大值是   

查看答案和解析>>

同步練習冊答案