本題考查的知識點是直線與平面垂直的性質(zhì)及用空間向量求平面間的夾角,其中求二面角的值時,一是幾何法,關(guān)鍵是找到二面有的平面角,二是向量法,關(guān)鍵是求出兩個平面的法向量.
(1)取AD的中點O,連接OP,OE,由等腰三角形三線合一,及OE∥AB,可得OE⊥AD,又由側(cè)面PAD⊥底面ABCD,我們易得到AD⊥平面OPE.再由線面垂直的性質(zhì)定理可得到AD⊥PE;再證明AD⊥EO
(2)有兩種解法,一是取OE的中點F,連接FG,OG,結(jié)合(1)的結(jié)論,我們易得∠GOE就是二面角E-AD-G的平面角,解三角形GOE即可得到答案;二是建立空間坐標(biāo)系,確定各個頂點的坐標(biāo),及平面ADE及平面ADG的法向量,然后代入向量夾角公式,我們易求出二面角E-AD-G的余弦值,進(jìn)而求出二面角E-AD-G的正切值.
(1)∵
,∴
,……………………2分
又
是
的中點,∴OE∥AB,∴OE⊥AD. ……………………4分
又OP∩OE=0,∴AD⊥平面OPE. ……………………6分
(2)建立如圖所示的空間直角坐標(biāo)系,則A(1,0,0),D(-1,0,0),P(0,0,),E(0,2,0),