一空間幾何體三視圖如圖所示,則該幾何體的體積為
根據(jù)題意可知該幾何體式四棱錐,高為2,底面是直角梯形,利用錐體的體積公式可知,其幾何體的體積為
,故填寫2
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)已知四邊形
滿足
∥
,
,
是
的中點,將
沿著
翻折成
,使面
面
,
為
的中點.
(Ⅰ)求四棱錐
的體積;(Ⅱ)證明:
∥面
;
(Ⅲ)求面
與面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A
1B
1C
1D
1中,AD∥BC,
AD⊥AB,AB=
。AD=2,BC=4,AA
1=2,E是DD
1的中點,F(xiàn)是平面B
1C
1E
與直線AA
1的交點。
(1)證明:(i)EF∥A
1D
1;
(ii)BA
1⊥平面B
1C
1EF;
(2)求BC
1與平面B
1C
1EF所成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
四棱錐
中,側(cè)面
⊥底面
,底面
是邊長為
的正方形,又
,
,
分別是
的中點.
(Ⅰ)求證:
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在梯形
中,
∥
,
,
,平面
平面
,四邊形
是矩形,
,點
在線段
上.
(1)求證:平面BCF⊥平面ACFE;
(2)當
為何值時,
∥平面
?證明你的結(jié)論;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四面體ABCD中,O是BD的中點,CA=CB=CD=BD=2,AB=AD=
。
(1)求證:AO⊥平面BCD;
(2)求E到平面ACD的距離;
(3)求異面直線AB與CD所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知梯形
中,
∥
,
,
,
、
分別是
、
上的點,
∥
,
,
是
的中點.沿
將梯形
翻折,使平面
⊥平面
(如圖).
(I)當
時,求證:
;
(II)若以
、
、
、
為頂點的三棱錐的體積記為
,求
的最大值;
(III)當
取得最大值時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖是一個幾何體的三視圖,則這個幾何體的體積是 ( )
查看答案和解析>>