3.若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)f(2x)的定義域是( 。
A.[0,1]B.[0,1]C.[0,1]∪(1,4]D.(0,1)

分析 根據(jù)函數(shù)的定義域可知-2≤2x+1<2,求出x的范圍并用區(qū)間表示,是所求函數(shù)的定義域.

解答 解:∵函數(shù)f(x)的定義域?yàn)閇0,2),∴0≤2x<2,
解得:0≤x≤1,
∴函數(shù)y=f(2x)的定義域是[0,1],
故選:B.

點(diǎn)評 本題的考點(diǎn)是抽象函數(shù)的定義域的求法,由兩種類型:①已知f(x)定義域?yàn)镈,則f(g(x))的定義域是使g(x)∈D有意義的x的集合,②已知f(g(x))的定義域?yàn)镈,則g(x)在D上的值域,即為f(x)定義域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系下,直線l:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸為非負(fù)半軸為極軸,取相同長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ-4cosθ=0.
(Ⅰ)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2f(x-2),x∈(1,+∞)}\\{1-|x|,x∈[-1,1]}\end{array}\right.$,若關(guān)于x的方程f(x)-loga(x+1)=0(a>0且a≠1)在區(qū)間[0,5]內(nèi)恰有5個(gè)不同的根,則實(shí)數(shù)a的取值范圍是(  )
A.(1,$\sqrt{3}$)B.($\root{4}{5}$,+∞)C.($\sqrt{3}$,+∞)D.($\root{4}{5}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)f(x)中,滿足“對任意x1,x2∈(0,+∞) (x1≠x2),都有 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0”的是( 。
A.f(x)=$\frac{1}{x}$B.f(x)=(x-1)2C.f(x)=2xD.f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)是一次函數(shù),g(x)是反比例函數(shù),且滿足f[f(x)]=x=2,g(1)=-1.
(1)求函數(shù)f(x)和g(x);
(2)設(shè)h(x)=f(x)+g(x),判斷函數(shù)h(x)在(0,+∞)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn=$\frac{n}{2}$(3n+5),正項(xiàng)等比數(shù)列{bn}中,b2=4,b1b7=256.
(Ⅰ)求{an}與{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個(gè)半徑大于2的扇形,其周長C=10,面積S=6,則這個(gè)扇形的半徑r=3,圓心角α的弧度數(shù)為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線$\frac{y^2}{5}-\frac{x^2}{m}=1$的離心率e∈(1,2),若命題“p∨q為真,命題“p∧q”為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出定義:若$m-\frac{1}{2}<x≤m+\frac{1}{2}$(m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x}=m.下列關(guān)于函數(shù)f(x)=|x-{x}|的四個(gè)結(jié)論:
①函數(shù)y=f(x)的定義域?yàn)镽,值域?yàn)?[0,\frac{1}{2}]$;
②函數(shù)y=f(x)的圖象關(guān)于直線$x=\frac{k}{2}(k∈Z)$對稱;
③函數(shù)y=f(x)在$[-\frac{1}{2},\frac{1}{2}]$上是增函數(shù);
④對任意實(shí)數(shù)x,都有f(-x)=f(x)
其中正確結(jié)論的序號是( 。
A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

同步練習(xí)冊答案