P為雙曲線x2-=1右支上一點(diǎn),M、N分別是圓(x+4)2+y2=4和(x-4)2+y2=1上的點(diǎn),則|PM|-|PN|的最大值為   
【答案】分析:先由已知條件知道雙曲線的兩個焦點(diǎn)為兩個圓的圓心,再利用平面幾何知識把|PM|-|PN|轉(zhuǎn)化為雙曲線上的點(diǎn)到兩焦點(diǎn)之間的距離即可求|PM|-|PN|的最大值.
解答:解:雙曲線的兩個焦點(diǎn)為F1(-4,0)、F2(4,0),為兩個圓的圓心,半徑分別為r1=2,r2=1,
|PM|max=|PF1|+2,|PN|min=|PF2|-1,
故|PM|-|PN|的最大值為(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=5.
故答案為:5.
點(diǎn)評:本題主要考查雙曲線的幾何性質(zhì)以及平面幾何等基礎(chǔ)知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì)和數(shù)形結(jié)合的數(shù)學(xué)思想,考查解決問題的能力和運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年河北省唐山一中高考數(shù)學(xué)沖刺試卷1(理科)(解析版) 題型:填空題

給出下列命題:
①若y=f(x)是定義在R上的函數(shù),則f'(x)=0是函數(shù)y=f(x)在x=x處取得極值的必要不充分條件.
②用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),則其中數(shù)字2,3相鄰的偶數(shù)有18個.
③已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為x1,x2,若|x1-x2|的最小值為π,則ω的值為2,θ的值為
④若P為雙曲線x2-=1上一點(diǎn),F(xiàn)1、F2分別為雙曲線的左右焦點(diǎn),且|PF2|=4,則|PF1|=2或6.
其中正確命題的序號是    (把所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年全國統(tǒng)一高考數(shù)學(xué)預(yù)測試卷(理科)(解析版) 題型:解答題

給出下列命題:
A.函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對稱.
B.已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為x1,x2,若|x1-x2|的最小值為π,則ω的值為2,θ的值為
C.底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.
D.若P為雙曲線x2-=1上的一點(diǎn),F(xiàn)1、F2分別為雙曲線的左右焦點(diǎn),且|PF2|=4,則|PF1|=2 或6.
其中正確的命題是    (把所有正確的命題的選項(xiàng)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省許昌市長葛三高高考數(shù)學(xué)預(yù)測試卷(理科)(解析版) 題型:解答題

給出下列命題:
A.函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對稱.
B.已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為x1,x2,若|x1-x2|的最小值為π,則ω的值為2,θ的值為
C.底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.
D.若P為雙曲線x2-=1上的一點(diǎn),F(xiàn)1、F2分別為雙曲線的左右焦點(diǎn),且|PF2|=4,則|PF1|=2 或6.
其中正確的命題是    (把所有正確的命題的選項(xiàng)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省許昌市長葛三高高考數(shù)學(xué)預(yù)測試卷(文科)(解析版) 題型:解答題

給出下列命題:
A.函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對稱.
B.已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為x1,x2,若|x1-x2|的最小值為π,則ω的值為2,θ的值為
C.底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.
D.若P為雙曲線x2-=1上的一點(diǎn),F(xiàn)1、F2分別為雙曲線的左右焦點(diǎn),且|PF2|=4,則|PF1|=2 或6.
其中正確的命題是    (把所有正確的命題的選項(xiàng)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二數(shù)學(xué)理科競賽試卷(解析版) 題型:填空題

設(shè)P為雙曲線x2-=1上的一點(diǎn),F(xiàn)1、F2是雙曲線的焦點(diǎn)

若|PF1|:|PF2|=3:2,則△PF1F2的面積為 ___________.

         

 

查看答案和解析>>

同步練習(xí)冊答案