精英家教網 > 高中數學 > 題目詳情

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數超過5000步的概率;

(2)已知某人一天的走路步數超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據題意完成下面的列聯(lián)表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

【答案】(Ⅰ);(Ⅱ)沒有95%以上的把握認為二者有關.

【解析】試題分析:(1人中該日走路步數超過步的有,根據古典概型概率公式即可得出結果;(2)根據所給數據,得出列聯(lián)表,利用公式計算與臨界值比較即可得出結論.

試題解析:(1)由題知,40人中該日走路步數超過5000步的有34人,頻率為,所以估計他的所有微信好友中每日走路步數超過5000步的概率為

(2)

,故沒有95%以上的把握認為二者有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數
(1)求f(x)的解析式,并判斷f(x)的奇偶性;
(2)比較 的大小,并寫出必要的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以元/個的價格出售.如果當天賣不完,剩下的面包以元/個的價格賣給飼料加工廠.根據以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以(單位:個, )表示面包的需求量, (單位:元)表示利潤.

(Ⅰ)求關于的函數解析式;

(Ⅱ)根據直方圖估計利潤不少于元的概率;

III)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)是R上的偶函數,且當x>0時,函數的解析式為
(1)用定義證明f(x)在(0,+∞)上是減函數;
(2)求當x<0時,函數的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知多面體如圖所示.其中為矩形, 為等腰直角三角形, ,四邊形為梯形,且, , .

(1)若為線段的中點,求證: 平面.

(2)線段上是否存在一點,使得直線與平面所成角的余弦值等于?若存在,請指出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且

(1)求證:不論為何值,總有平面BEF⊥平面ABC;

(2)當λ為何值時,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中, 平面, , , , 的中點, 為棱上一點.

(Ⅰ)當為何值時,有平面

(Ⅱ)在(Ⅰ)的條件下,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=x2+bx+c,當x∈R時f(x)=f(2﹣x)恒成立,且3是f(x)的一個零點. (Ⅰ)求函數f(x)的解析式;
(Ⅱ)設g(x)=f(ax)(a>1),若函數g(x)在區(qū)間[﹣1,1]上的最大值等于5,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高考復習經過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓練次數與答題正確率﹪的關系,對某校高三某班學生進行了關注統(tǒng)計,得到如下數據:

1

2

3

4

20

30

50

60

(1)求關于的線性回歸方程,并預測答題正確率是100﹪的強化訓練次數;

(2)若用表示統(tǒng)計數據的“強化均值”(精確到整數),若“強化均值”的標準差在區(qū)間內,則強化訓練有效,請問這個班的強化訓練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

樣本數據的標準差為:

查看答案和解析>>

同步練習冊答案