14.若直線3x+4y+m=0向左平移2個單位,再向上平移3個單位后與圓x2+y2=1相切,則m=23或13.

分析 根據(jù)圓的方程,找出圓心坐標和半徑r,根據(jù)平移規(guī)律“上加下減,左加右減”表示出平移后直線的方程,根據(jù)平移后直線與圓相切,可得圓心到直線的距離等于圓的半徑,利用點到直線的距離公式列出關(guān)于m的方程,求出方程的解即可得到m的值.

解答 解:圓x2+y2=1的圓心坐標為(0,0),半徑r=1,
直線3x+4y+m=0向左平移2個單位,再向上平移3個單位后解析式為:
3(x-2)+4(y-3)+m=0,即3x+4y+m-18=0,
由此時直線與圓相切,可得圓心到直線的距離d=$\frac{|m-18|}{5}$=1,
解得:m=23或13.
故答案為23或13.

點評 此題考查了直線與圓的位置關(guān)系,涉及的知識有:圓的標準方程,點到直線的距離公式,以及平移規(guī)律,當直線與圓相切時,圓心到直線的距離等于圓的半徑,熟練掌握此性質(zhì)及平移規(guī)律是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+bx+c的圖象在y軸上的截距為5,且滿足下列兩個條件:①f(x)=f(2-x);②f(-1)=2f(1).(1)求f(x)的解析式;
(2)若f(x)≤20,求相應(yīng)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式(x+1)(x-2)>0的解集為( 。
A.{x|x<-1或x>2}B.{x|x<-2或x>1}C.{x|-2<x<1}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等比數(shù)列{an}前四項和為1,前8項和為17,則它的公比為( 。
A.2B.-2C.2或-2D.2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F(xiàn)1,F(xiàn)2分別是其左、右焦點,O是坐標原點,A是橢圓上不同于頂點的任一點,$∠A{F_1}{F_2}={30^0},AO=O{F_2}$,該橢圓的離心率e=$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一個多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M、N分別是AF、BC的中點,
(1)求證:MN∥平面CDEF;
(2)求點B到平面MNF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機遇.2016年雙十一期間,某購物平臺的銷售業(yè)績高達516億人民幣,與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務(wù)的好評率為0.75.其中對商品和服務(wù)都做出好評的交易為80次.
(1)先完成關(guān)于商品和服務(wù)評價的2×2列聯(lián)表,再判斷能否在犯錯誤的概率不超過0.001的前提下,以為商品好評與服務(wù)好評有關(guān)?
(2)若用分層抽樣的方法從“對商品好評”和“商品不滿意”中抽出5次交易,再從這5次交易中選出2次,求恰有一次為“商品好評”的概率.
附臨界值表:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.89710.828
k2的觀測值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
關(guān)于商品和服務(wù)評價的2×2列聯(lián)表:
對服務(wù)好評對服務(wù)不滿意合計
對商品好評a=80b=40120
對商品不滿意c=70d=1080

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.有下列四個命題:
①已知A,B,C,D是空間任意四點,則$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=0;
②若兩個非零向量$\overrightarrow{AB}$與$\overrightarrow{CD}$滿足$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$,則$\overrightarrow{AB}$‖$\overrightarrow{CD}$;
③分別表示空間向量的有向線段所在的直線是異面直線,則這兩個向量不是共面向量;
④對于空間的任意一點O和不共線的三點A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),則P,A,B,C四點共面.
其中正確命題有②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|x2+3x-10<0},B={x|x2-2x-3≥0},全集為R,求A∩B和A∪(∁RB)

查看答案和解析>>

同步練習(xí)冊答案