已知x≠kπ (k∈Z),函數(shù)y=sin2x+
4sin2x
的最小值是
5
5
分析:令t=sin2x∈(0,1],則函數(shù)y=sin2x+
4
sin2x
=t+
4
t
,根據(jù)函數(shù)的導(dǎo)數(shù)為y′在(0,1]小于或等于零,故函數(shù)y=t+
4
t
上是減函數(shù),故當(dāng)t=1,函數(shù)取得最小值.
解答:解:已知x≠kπ (k∈Z),故sinx≠0,且sin2x∈(0,1].
令t=sin2x,則 y=sin2x+
4
sin2x
=t+
4
t

由于函數(shù)y=t+
4
t
的導(dǎo)數(shù)為y′=1-
4
t2
 在(0,1]小于或等于零,故函數(shù)y=t+
4
t
上是減函數(shù),故當(dāng)t=1,即sin2x=1時(shí),函數(shù)取得最小值為5,
故答案為 5.
點(diǎn)評(píng):本題主要考查求三角函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由函數(shù)的單調(diào)性求最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閧x|x≠kπ,k∈Z},且對(duì)于定義域內(nèi)的任何x、y,有f(x-y)=
f(x)•f(y)+1f(y)-f(x)
成立,且f(a)=1(a為正常數(shù)),當(dāng)0<x<2a時(shí),f(x)>0.
(1)判斷f(x)奇偶性;
(2)求f (x)在[2a,3a]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)在[a,b]上連續(xù),定義
f1(x)=f(t)min,x∈[a,b],a≤t≤x
f2(x)=f(t)max,x∈[a,b],a≤t≤x
;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整數(shù)k使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.有下列命題:
①若f(x)=cosx,x∈[0,π],則f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],則f2(x)=2x,x∈[-1,4]
③f(x)=x為[1,2]上的1階收縮函數(shù);
④f(x)=x2為[1,4]上的5階收縮函數(shù).
其中你認(rèn)為正確的所有命題的序號(hào)為
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),c=
2
b
,c為半焦距.過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
3
2

(1)求橢圓的方程.
(2)(理)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.
(文)若直線y=x+k(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使OC⊥OD(O為原點(diǎn))?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知f(x)是定義在R上,且周期為2的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2.若直線y=x+a與曲線y=f(x)恰有兩個(gè)公共點(diǎn),那么實(shí)數(shù)a的值為(k∈z)


  1. A.
    k
  2. B.
    2k
  3. C.
    2k或2k-數(shù)學(xué)公式
  4. D.
    k或k-數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案