【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過(guò)程中,已經(jīng)得到f1)<0,f1.5)>0,f1.25)<0,則方程的根落在區(qū)間( 。

A. B. C. D. 不能確定

【答案】B

【解析】

根據(jù)函數(shù)的零點(diǎn)存在性定理,由f1)與f1.5)的值異號(hào)得到函數(shù)fx)在區(qū)間(1,1.5)內(nèi)有零點(diǎn),同理可得函數(shù)在區(qū)間(1.251.5)內(nèi)有零點(diǎn),從而得到方程的根所在的區(qū)間.

解:∵f1)<0,f1.5)>0,

∴在區(qū)間(1,1.5)內(nèi)函數(shù)存在一個(gè)零點(diǎn)

又∵f1.5)>0,f1.25)<0,

∴在區(qū)間(1.25,1.5)內(nèi)函數(shù)存在一個(gè)零點(diǎn),

由此可得方程的根落在區(qū)間(1.25,1.5)內(nèi),

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x),g(x)的定義域都是D,直線x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點(diǎn),若|AB|的值是不等于0的常數(shù),則稱曲線y=f(x),y=g(x)為“平行曲線”,設(shè)f(x)=ex-alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+)的“平行曲線”,g(1)=e,g(x)在區(qū)間(2,3)上的零點(diǎn)唯一,則a的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)k>0,函數(shù)f(x)=+x+kln|x﹣1|.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)函數(shù)f(x)有兩個(gè)極值點(diǎn),且0<θ<π時(shí),證明:(2k﹣1)sinθ+(1﹣k)sin[(1﹣k)θ]>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C ,直線l

(Ⅰ)求直線l所過(guò)定點(diǎn)A的坐標(biāo);

(Ⅱ)求直線l被圓C所截得的弦長(zhǎng)最短時(shí)m的值及最短弦長(zhǎng);

(Ⅲ)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為 , 且經(jīng)過(guò)點(diǎn)M(4,1),直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)=(2x-x2)ex

(-,)是f(x)的單調(diào)遞減區(qū)間;

f(-)是f(x)的極小值,f()是f(x)的極大值;

f(x)沒(méi)有最大值,也沒(méi)有最小值;

f(x)有最大值,沒(méi)有最小值.

其中判斷正確的是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三棱錐P﹣ABC,點(diǎn)P、A、B、C都在半徑為的球面上,若PA、PB、PC兩兩互相垂直,則球心到截面ABC的距離為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時(shí),求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)底數(shù)),方程有四個(gè)實(shí)數(shù)根,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案