【題目】設(shè){an}是一個公差不為零的等差數(shù)列,其前n項和為Sn , 已知S9=90,且a1 , a2 , a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Tn

【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d(d≠0),則a2=a1+d,a4=a1+3d,

由a1,a2,a4成等比數(shù)列,可得

,

整理,可得a1=d.

,可得a1=d=2,

∴an=a1+(n﹣1)d=2n


(2)解:由于an=2n,

所以 ,

從而

即數(shù)列{bn}的前n項和為


【解析】(1)設(shè)等差數(shù)列{an}的公差為d(d≠0),由a1 , a2 , a4成等比數(shù)列,可得 ,即 ,由 ,聯(lián)立解出即可得出.(2)利用“裂項求和”即可得出.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)給出的空間幾何體的三視圖,用斜二測畫法畫出它的直觀圖.(寫出畫法,并保留作圖痕跡)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率為,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過原點的直線與橢圓交于, 兩點( 不是橢圓的頂點),點在橢圓上,且.直線軸、軸分別交于兩點.設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天然氣是較為安全的燃氣之一,它不含一氧化碳,也比空氣輕,一旦泄露,立即會向上擴散,不易積累形成爆炸性氣體,安全性較高,其優(yōu)點有:①綠色環(huán)保;②經(jīng)濟實惠;③安全可靠;④改善生活. 某市政府為了節(jié)約居民天然氣,計劃在本市試行居民天然氣定額管理,即確定一個居民年用氣量的標準,為了確定一個較為合理的標準,必須先了解全市居民日常用氣量的分布情況,現(xiàn)采用抽樣調(diào)查的方式,獲得了位居民某年的用氣量(單位:立方米),樣本統(tǒng)計結(jié)果如下圖表.

(1)分布求出的值;

(2)若從樣本中年均用氣量在(單位:立方米)的5位居民中任選2人作進一步的調(diào)查研究,求年均用氣量最多的居民被選中的概率(5位居民的年均用氣量均不相等).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)與向量 =(2,sinC)共線,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( , ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)為常數(shù)).

(1)當時,求的單調(diào)區(qū)間;

(2)若在區(qū)間的極大值、極小值各有一個,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分圖象如圖所示;
(1)求ω,φ;
(2)將y=f(x)的圖象向左平移θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個對稱點為( ,0),求θ的最小值.
(3)對任意的x∈[ , ]時,方程f(x)=m有兩個不等根,求m的取值范圍.

查看答案和解析>>

同步練習冊答案