【題目】已知函數(shù)).

(Ⅰ)若方程有兩根,求的取值范圍;

(Ⅱ)在(Ⅰ)的前提下,設(shè),求證: 隨著的減小而增大;

(Ⅲ)若不等式恒成立,求證: ).

【答案】(Ⅰ).(Ⅱ)見解析; (Ⅲ)見解析.

【解析】試題分析:(Ⅰ)由,有,設(shè),求得的單調(diào)性,進(jìn)而由方程,求解實數(shù)的取值范圍;

(Ⅱ)由題意, ,推得進(jìn)而得到,即可得到隨著的減小而增大.

(Ⅲ)依題意, 恒成立,記,則,

分類討論得到函數(shù)的最小值, ,設(shè),利用函數(shù)的性質(zhì),即可求得結(jié)論.

試題解析:(Ⅰ)由,有,

設(shè),由,

上單調(diào)遞增,在上單調(diào)遞減,又 .當(dāng)時, ;當(dāng)時,

故若方程有兩根,則

(Ⅱ)故若方程有兩根,則,

假設(shè)對于任意的.記,由上可知;記,由上可知

因為上單調(diào)遞增,在上單調(diào)遞減,故由可知,

又因為, ,所以,故隨著的減小而增大.

(Ⅲ)依題意, 恒成立,記,則

①當(dāng)時, 恒成立,故單調(diào)遞減,又因為,所以上函數(shù)值小于零,不符合題意,舍去.

②當(dāng)時,

小于0

大于0

單調(diào)遞減

單調(diào)遞增

由上表可知上的

,由可知, 單調(diào)遞增,在單調(diào)遞減,故,綜上,即

可得),兩邊乘以可得,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為橢圓上的點,且,過點的動直線與圓相交于兩點,過點作直線的垂線與橢圓相交于點

(1)求橢圓的離心率;

(2)若,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于300的為“長纖維”,其余為“短纖維”)

纖維長度

甲地(根數(shù))

3

4

4

5

4

乙地(根數(shù))

1

1

2

10

6

(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.

甲地

乙地

總計

長纖維

短纖維

總計

附:(1);

(2)臨界值表;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為為參數(shù), ),直線,若直線與曲線C相交于A,B兩點,且

(Ⅰ)求;

(Ⅱ)若M,N為曲線C上的兩點,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知2Sn=3n+3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an , 求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系, 曲線的參數(shù)方程為為參數(shù)) ;在以原點為極點, 軸的正半軸為極軸的極坐標(biāo)系中, 曲線的極坐標(biāo)參數(shù)方程為.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若射線與曲線,的交點分別為 (異于原點). 當(dāng)斜率, 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α< ,
(1)求tanα的值;
(2)求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中, 的中點為,且,點的延長線上,且.固定邊,在平面內(nèi)移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標(biāo)原點如圖所示建立平面直角坐標(biāo)系.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)動直線交曲線兩點,且以為直徑的圓經(jīng)過點,求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案