【題目】已知點(diǎn)m是直線l: x﹣y+3=0與x軸的交點(diǎn),將直線l繞點(diǎn)m旋轉(zhuǎn)30°,求所得到的直線l′的方程.
【答案】解:在方程 x﹣y+3=0中,取y=0,得x=﹣ .
∴M( ),
直線 x﹣y+3=0的斜率為 ,則其傾斜角為60°,
直線l繞點(diǎn)M旋轉(zhuǎn)30°,若是逆時(shí)針,則直線l′的傾斜角為90°,
∴直線l′的方程為x=﹣ ;
若是順時(shí)針,則直線l′的傾斜角為30°,
∴直線l′的斜率為 ,
∴直線l′的方程為y﹣0= (x+ ),即x﹣
【解析】求出直線l與x軸的交點(diǎn)M的坐標(biāo),然后分l順時(shí)針和逆時(shí)針旋轉(zhuǎn)求出直線l的傾斜角,再進(jìn)一步分析斜率的情況,斜率不存在時(shí)直接寫出直線方程,斜率存在時(shí)由直線方程的點(diǎn)斜式求得直線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)求橢圓 的長軸和短軸的長、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo).
(2)求焦點(diǎn)在y軸上,焦距是4,且經(jīng)過點(diǎn)M(3,2)的橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線段上,且, , 為的中點(diǎn), 在線段上,且.
(Ⅰ)當(dāng)時(shí),證明:平面平面;
(Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時(shí),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某中產(chǎn)品中抽取100件,測量這些產(chǎn)品的質(zhì)量指標(biāo)值.由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4:2:1.
(1)求這些產(chǎn)品質(zhì)量指標(biāo)落在區(qū)間[75,85]內(nèi)的概率;
(2)用分層抽樣的方法在區(qū)間[45,75)內(nèi)抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任意抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間[45,65)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明 PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求VB﹣EFD .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時(shí),解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多面體的直觀圖和三視圖如圖,M是A1B的中點(diǎn),N是棱B1C1上的任意一點(diǎn)(含頂點(diǎn)).
①當(dāng)點(diǎn)N是棱B1C1的中點(diǎn)時(shí),MN∥平面ACC1A1;
②MN⊥A1C;
③三棱錐N﹣A1BC的體積為VN﹣A BC= a3;
④點(diǎn)M是該多面體外接球的球心.
其中正確的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單位圓O上的兩點(diǎn)A,B及單位圓所在平面上的一點(diǎn)P,滿足 =m + (m為常數(shù)).
(1)如圖,若四邊形OABP為平行四邊形,求m的值;
(2)若m=2,求| |的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com