已知
a
=(3,4),
b
=(5,12)
(1)求
a
b

(2)求|
a
|和|
b
|以及
a
b
所成角的余弦值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(1)利用數(shù)量積的坐標(biāo)運(yùn)算即可得出;
(2)利用模的計(jì)算公式和向量的夾角公式即可得出.
解答: 解:(1)
a
b
=3×5+4×12=63;
(2)|
a
|=
32+42
=5,
|
b
|=
52+122
=13.
a
b
所成角的余弦值=
a
b
|
a
||
b
|
=
63
5×13
=
63
65
點(diǎn)評:本題考查了數(shù)量積的坐標(biāo)運(yùn)算、模的計(jì)算公式和向量的夾角公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某單位有職工120人,其中男職工90人.現(xiàn)在采用分層抽樣(按男女分層)抽取一個樣本,若樣本中有3名女職工,則樣本容量為( 。
A、9B、12C、10D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,acos(
π
2
-A)=bcos(
π
2
-B),判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=(nx-n+2)•ex(其中n∈N*
(Ⅰ)求f(x)在[0,2]上的最大值;
(Ⅱ)若函數(shù)g(x)=(nx+2)(nx-15)(n∈N*),求n所能取到的最大正整數(shù),使對任意x>0,都有2f′(x)>g(x)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-1+
a
ex
(a∈R,e為自然對數(shù)的底數(shù)).
(1)若函數(shù)在點(diǎn)(0,f(0))處的切線垂直于y軸,求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x2-x+a.
(Ⅰ)當(dāng)a=2時,求函數(shù)y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)y=f(x)有且僅有一個零點(diǎn),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-3x+b
3x+1+a
是奇函數(shù).
(1)求a,b的值;
(2)用函數(shù)單調(diào)性的定義證明函數(shù)f(x)在R上是減函數(shù);
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中點(diǎn).
(Ⅰ)證明:DC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比
(Ⅲ)畫出平面BDC1與平面ABC的交線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算|1+lg0.001|+
lg2
1
3
-4lg3+4
+lg6-lg0.02.
(2)化簡:27 
2
3
-2 log23×log2
1
8
+2lg(
3+
5
+
3-
5
).
(3)已知log147=a,log145=b,則用a,b表示log3528.

查看答案和解析>>

同步練習(xí)冊答案