【題目】已知函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)= ,給出下列命題:
①F(x)=|f(x)|;
②函數(shù)F(x)是偶函數(shù);
③當(dāng)a<0時,若0<m<n<1,則有F(m)﹣F(n)<0成立;
④當(dāng)a>0時,函數(shù)y=F(x)﹣2有4個零點(diǎn).
其中正確命題的個數(shù)為( )
A.0
B.1
C.2
D.3
【答案】D
【解析】解:(1)∵函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)= ,
∴|f(x)|=|a|log2x|+1|,∴F(x)≠|(zhì)f(x)|;
①不對
2)∵F(﹣x)= =F(x)
∴函數(shù)F(x)是偶函數(shù);
故②正確
3)∵當(dāng)a<0時,若0<m<n<1,
∴|log2m|>|log2n|
∴a|log2m|+1>a|log2n|+1,
即F(m)<F(n)成立;
故F(m)﹣F(n)<0成立;
所以③正確
4)
∵f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)= ,
∴x>0時,(0,1)單調(diào)遞減,(1,+∞)單調(diào)遞增
∴x>0時,F(xiàn)(x)的最小值為F(1)=1,
故x>0時,F(xiàn)(x)與y=﹣2有2個交點(diǎn),
∵函數(shù)F(x)是偶函數(shù)
∴x<0時,F(xiàn)(x)與y=﹣2有2個交點(diǎn)
故當(dāng)a>0時,函數(shù)y=F(x)﹣2有4個零點(diǎn).
所以④正確,
【考點(diǎn)精析】利用函數(shù)的偶函數(shù)和函數(shù)奇偶性的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù);在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 的定義域?yàn)椋ī?,1),滿足f(﹣x)=﹣f(x),且f( )= .
(1)求函數(shù)f(x)的解析式;
(2)證明f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(x2﹣1)+f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù),關(guān)于的不等式的解集有且只有一個元素.
(1)設(shè)數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式;
(2)記,則數(shù)列中是否存在不同的三項(xiàng)成等比數(shù)列?若存在,求出這三項(xiàng),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)當(dāng)時, ,若當(dāng)時, 恒成立,求的最小值;
(2)若的圖像關(guān)于對稱,且時, ,求當(dāng)時, 的解析式;
(3)當(dāng)時, .若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其中a為常數(shù).
(1)若a=1,判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù) 在其定義域上是奇函數(shù),求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0),上的點(diǎn)M(1,m)到其焦點(diǎn)F的距離為2,
(1)求C的方程;并求其準(zhǔn)線方程;
(2)已知A (1,﹣2),是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線L,使得直線L與拋物線C有公共點(diǎn),且直線OA與L的距離等于 ?若存在,求直線L的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和直線: ,橢圓的離心率,坐標(biāo)原點(diǎn)到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點(diǎn),若直線過點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線,使以為直徑的圓過點(diǎn)?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面是邊長為 的正方形,AA1=3,點(diǎn)F在棱B1B上運(yùn)動.
(1)若三棱錐B1﹣A1D1F的體積為 時,求異面直線AD與D1F所成的角
(2)求異面直線AC與D1F所成的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com