【題目】如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點,滿足均與軸垂直,設(shè)的面積之和記為

,求的值;

若對任意的,存在,使得成立,且實數(shù)使得數(shù)列為遞增數(shù)列,其中求實數(shù)的取值范圍.

【答案】(1)(2)

【解析】

(1)運用三角形的面積公式和三角函數(shù)的和差公式,以及特殊角的函數(shù)值,可得所求角;

(2)由正弦函數(shù)的值域可得的最大值,再由基本不等式可得的最大值,可得的范圍,再由數(shù)列的單調(diào)性,討論的范圍,即可得到的取值范圍.

依題意,可得

,

,得,

,所以

因為,所以,所以,

當(dāng)時,

(當(dāng)且僅當(dāng)時,等號成立)

又因為對任意,存在,使得成立,

所以,即,解得

因為數(shù)列為遞增數(shù)列,且

所以,從而

,所以

從而,

,

①當(dāng)時,,從而

此時同號,

,即,

②當(dāng)時,由于趨向于正無窮大時,趨向于相等,從而趨向于相等,即存在正整數(shù),使,從而,

此時異號,與數(shù)列為遞增數(shù)列矛盾,

綜上,實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程有五個不同的根,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知點A的極坐標(biāo)為 ,直線l的極坐標(biāo)方程為 ,且點A在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 ,試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的極值;

(2)求函數(shù) 的單調(diào)區(qū)間;

(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C是橢圓W: 上的三個點,O是坐標(biāo)原點.
(1)當(dāng)點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當(dāng)點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,互不相同的點A1 , A2 , …,An , …和B1 , B2 , …,Bn , …分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面積均相等,設(shè)OAn=an , 若a1=1,a2=2,則數(shù)列{an}的通項公式是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知函數(shù)的圖像與直線相切,其中是自然對數(shù)的底數(shù).

(1)求實數(shù)的值;

(2)設(shè)函數(shù)在區(qū)間內(nèi)有兩個極值點.

①求實數(shù)的取值范圍;

②設(shè)函數(shù)的極大值和極小值的差為,求實數(shù)的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓

(Ⅰ)求過點的圓的切線方程;

(Ⅱ)設(shè)圓軸相交于,兩點,點為圓上異于,的任意一點,直線,分別與直線交于,兩點.

(。┊(dāng)點的坐標(biāo)為時,求以為直徑的圓的圓心坐標(biāo)及半徑;

(ⅱ)當(dāng)點在圓上運動時,以為直徑的圓軸截得的弦長是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)判斷上的增減性,并證明你的結(jié)論

(2)解關(guān)于的不等式

(3)若上恒成立,求的取值范圍

查看答案和解析>>

同步練習(xí)冊答案