7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<2}\\{{x}^{\frac{2}{3}},x≥2}\end{array}\right.$,則不等式f(3x+1)<4的解集為( 。
A.$\{x\left|{-5<x<\frac{1}{3}}\right.\}$B.$\{x\left|{-3<x<\frac{5}{3}}\right.\}$C.$\{x\left|{-5<x<\frac{7}{3}}\right.\}$D.$\{x\left|{\frac{1}{3}<x<2}\right.\}$

分析 畫出函數(shù)f(x)的圖象,設(shè)3x+1=t,不等式f(3x+1)<4,則f(t)<4,求出t的范圍,即可求出x的范圍

解答 Q解:畫出函數(shù)f(x)的圖象,
設(shè)3x+1=t,
不等式f(3x+1)<4.
則f(t)<4,
由圖象可知,
$\left\{\begin{array}{l}{t<2}\\{lo{g}_{2}(2-t)<4}\end{array}\right.$或$\left\{\begin{array}{l}{t≥2}\\{{t}^{\frac{2}{3}<4}}\end{array}\right.$,
解得-14<t<2,2≤t<8,
∴-14<3x+1<8,
解得-5<x<$\frac{7}{3}$,
故選:C

點(diǎn)評(píng) 本題考查了分段函數(shù)問題,以及不等式的解集問題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率$e=\frac{{\sqrt{3}}}{2},A、B$,分別是橢圓的左、右頂點(diǎn),點(diǎn)P是橢圓上的一點(diǎn),直線PA、PB的傾斜角分別為α、β滿足tanα+tanβ=1,則直線PA的斜率為$\frac{{1±\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過點(diǎn)M(2,2)的直線與拋物線L:x2=2py相交于不同兩點(diǎn)A,B,若點(diǎn)M恰為線段AB的中點(diǎn),則實(shí)數(shù)p的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,1)C.(1,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1焦點(diǎn)在x軸上,其中a=6,e=$\frac{1}{3}$,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓C的長軸長為10,焦距為6,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖某幾何體的三視圖如圖所示,那么該幾何體外接球的表面積為$\frac{16}{3}π$;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{a}$=(x,0),$\overrightarrow$=(1,y),且($\overrightarrow{a}$+$\sqrt{3}$$\overrightarrow$)⊥($\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$).
(1)求點(diǎn)P(x,y)的軌跡C的方程;
(2)若直線y=kx+m(k≠0)與曲線C交于A,B兩點(diǎn),D(0,-1),且|AD|=|DB|,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,求實(shí)數(shù)a所有可能取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=2sin(2x+\frac{π}{4})$,x∈R
(1)寫出函數(shù)f(x)的最小正周期、對(duì)稱軸方程及單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$上的最值及取最值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果集合A={x|ax2+4x+4=0}中只有一個(gè)元素,則a的值是0或1.

查看答案和解析>>

同步練習(xí)冊(cè)答案