18.過點M(2,2)的直線與拋物線L:x2=2py相交于不同兩點A,B,若點M恰為線段AB的中點,則實數(shù)p的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,1)C.(1,+∞)D.(1,2)

分析 設(shè)A(x1,y1),B(x2,y2).由于x12=2py1,x22=2py2可得(x1+x2)(x1-x2)=2p(y1-y2).再利用斜率計算公式與中點坐標公式即可得出pk=2,即可得出結(jié)論.

解答 解:設(shè)A(x1,y1),B(x2,y2).
∵x12=2py1,x22=2py2,
∴(x1+x2)(x1-x2)=2p(y1-y2).
又x1+x2=2×2,
∴4=2pk,
∴pk=2
又直線方程為y-2=k(x-2),代入x2=2py,可得x2-2pkx+4pk-4p=0,
∴△=4p2k2-16pk+16p>0,
∴16-32+16p>0
∴p>1,
故選:C.

點評 本題考查了“點差法”、斜率計算公式與中點坐標公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點P(-2,2)且垂直于直線2x-y+1=0的直線方程為( 。
A.2x+y+2=0B.2x+y-5=0C.x+2y-2=0D.x-2y+7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.數(shù)列{an}滿足a1=1,an+1•an+2nan+1=2n+1an(n∈N+).
(1)證明:數(shù)列$\{\frac{2^n}{a_n}\}$是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(2)設(shè)bn=(2n-1)(n+1)an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合A={1,2,3},B={1,3,4},則A∪B的子集個數(shù)為( 。
A.2B.3C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若冪函數(shù)y=(m2-3m+3)x${\;}^{{m}^{2}-m-2}$的圖象不經(jīng)過坐標原點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列四個函數(shù)中,在區(qū)間[-1,1]上是增函數(shù)的是( 。
A.y=2xB.y=x2C.y=log2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.長方體ABCD-A1B1C1D1的各個頂點都在體積為$\frac{32π}{3}$的球O 的球面上,其中AA1=2,則四棱錐O-ABCD 的體積的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<2}\\{{x}^{\frac{2}{3}},x≥2}\end{array}\right.$,則不等式f(3x+1)<4的解集為( 。
A.$\{x\left|{-5<x<\frac{1}{3}}\right.\}$B.$\{x\left|{-3<x<\frac{5}{3}}\right.\}$C.$\{x\left|{-5<x<\frac{7}{3}}\right.\}$D.$\{x\left|{\frac{1}{3}<x<2}\right.\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓C:(x-a)2+(y-a)2=1(a>0)與直線y=2x相交于P、Q兩點,則當△CPQ的面積為$\frac{1}{2}$時,實數(shù)a的值為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{\sqrt{5}}}{4}$D.$\frac{{\sqrt{10}}}{4}$

查看答案和解析>>

同步練習(xí)冊答案