已知向量
a
=(1,0)
,
b
=(
1
2
1
2
)
,則(
a
-
b
)•
b
=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:根據(jù)平面向量數(shù)量積的運算性質(zhì)將
a
,
b
的坐標代入計算即可.
解答: 解:(
a
-
b
)•
b
=(
1
2
,-
1
2
)•(
1
2
,
1
2
)=
1
4
-
1
4
=0,
故答案為:0.
點評:本題考查了平面向量數(shù)量積的運算,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,AB=AC=BC=6,平面內(nèi)一點M滿足
BM
=
2
3
BC
-
1
3
BA
,則
AC
MB
等于(  )
A、-9B、-18C、12D、18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當0<a<1時滿足|loga(x+1)>|loga(x-1)|的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c為常數(shù)),滿足條件
(1)圖象過原點;
(2)f(1+x)=f(1-x);
(3)方程f(x)=x有兩個不等的實根試求f(x)的解析式并求x∈[-1,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P,Q的坐標分別為(-2,0),(2,0),直線PM,QM相交于點M,且它們的斜率之積是-
1
4

(Ⅰ)求點M的軌跡方程;
(Ⅱ)過點O作兩條互相垂直的射線,與點M的軌跡交于A、B兩點.試判斷點O到直線AB的距離是否為定值.若是請求出這個定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式3x2+2ax+b≤0在區(qū)間[-1,0]上恒成立,則a2+b2-1的取值范圍是(  )
A、[
9
4
,+∞)
B、(-1,
9
4
]
C、[
4
5
,+∞)
D、(-1,
4
5
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△P1OP2的面積為
27
4
,P為線段P1P2的一個三等分點,求以直線OP1,OP2為漸近線且過點P而離心率為
13
2
的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
的圖象過點(1,2).
(1)求f(x)的解析式;
(2)求證:f(x)在x∈[1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在單調(diào)遞增數(shù)列{an}中,a1=1且an+1=
2a
2
n
an+1-an
(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)已知bn=
3n-1
an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案