【題目】如圖,在正方形中,點(diǎn),分別是,的中點(diǎn),將分別沿,折起,使兩點(diǎn)重合于.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)詳見解析(Ⅱ)
【解析】
試題分析:(Ⅰ)證明面面垂直,一般利用面面垂直判定定理,即從線面垂直出發(fā)給予證明,而線面垂直的證明往往利用線面垂直判定與性質(zhì)定理,即從線線垂直出發(fā)給予證明,而線線垂直的尋找與論證往往需結(jié)合平幾知識(shí)進(jìn)行:連接交于,則根據(jù)等腰三角形性質(zhì)得,(Ⅱ)求二面角,一般利用空間向量進(jìn)行求解,先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解出各面法向量,利用向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角之間關(guān)系求解
試題解析:(Ⅰ)證明:連接交于,連接.
在正方形中,點(diǎn)是中點(diǎn),點(diǎn)是中點(diǎn),
所以,
所以,
所以在等腰中,是的中點(diǎn),且,
因此在等腰中,,
從而,
又,
所以平面,
即平面.…………………6分
(Ⅱ)方法一:
在正方形中,連接,交于,設(shè)正方形的邊長(zhǎng)為2,
由于點(diǎn)是中點(diǎn),點(diǎn)是中點(diǎn),
所以,
于是,
從而,
所以,
于是,在翻折后的幾何體中,為二面角的平面角,
在正方形中,解得,,
所以,在中,,,,
由余弦定理得,
所以,二面角的余弦值為.………………………………12分
方法二:
由題知兩兩互相垂直,故以為原點(diǎn),向量方向分別為,,軸的正方向,建立如圖的空間直角坐標(biāo)系.
設(shè)正方形邊長(zhǎng)為2,則,,,.
所以,.
設(shè)為平面的一個(gè)法向量,
由得,
令,得,
又由題知是平面的一個(gè)法向量,
所以.
所以,二面角的余弦值為.………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在各棱長(zhǎng)為的直四棱柱中,底面為棱形, 為棱上一點(diǎn),且
(1)求證:平面平面;
(2)平面將四棱柱分成上、下兩部分,求這兩部分的體積之比.
(棱臺(tái)的體積公式為,其中分別為上、下底面面積, 為棱臺(tái)的高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)滿足:
①對(duì)任意的, ,當(dāng)時(shí),有成立;
②對(duì)恒成立.求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,四邊形是直角梯形, 底面, 為的中點(diǎn), 點(diǎn)在上,且.
(1)證明: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:+=1(a>b>0),其左右焦點(diǎn)為F1,F2,過(guò)F2的直線l交橢圓E于A,B兩點(diǎn),△AB F1的周長(zhǎng)為8,且△AF1F2的面積最大時(shí),△AF1F2為正三角形。
(1)求橢圓E的方程;
(2)若MN是橢圓E經(jīng)過(guò) 原點(diǎn)的弦,MN||AB,求證: 為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,底面是邊長(zhǎng)為2的等邊三角形, 為的中點(diǎn).
(1)求證: 平面;
(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,并且經(jīng)過(guò).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的右焦點(diǎn)作直線,直線與橢圓相交于兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.
(1) 求圖中的值;
(2) 已知滿意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評(píng)分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“石頭、剪刀、布”是個(gè)廣為流傳的游戲,游戲時(shí)甲乙雙方每次做“石頭”“剪刀”“布”三種手勢(shì)中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,同種手勢(shì)不分勝負(fù)須繼續(xù)比賽,假設(shè)甲乙兩人都是等可能地做這三種手勢(shì).
(1)列舉一次比賽時(shí)兩人做出手勢(shì)的所有可能情況;
(2)求一次比賽甲取勝的概率,并說(shuō)明“石頭、剪刀、布”這個(gè)廣為流傳的游戲的公平性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com