已知A,B,C是橢圓W:
x2
4
+y2=1
上的三個點,O是坐標原點.
(Ⅰ)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(Ⅱ)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.
(I)
精英家教網(wǎng)
∵四邊形OABC為菱形,B是橢圓的右頂點(2,0)
∴直線AC是BD的垂直平分線,可得AC方程為x=1
設(shè)A(1,t),得
12
4
+t2=1
,解之得t=
3
2
(舍負)
∴A的坐標為(1,
3
2
),同理可得C的坐標為(1,-
3
2

因此,|AC|=
3
,可得菱形OABC的面積為S=
1
2
|AC|•|B0|=
3
;
(II)∵四邊形OABC為菱形,∴|OA|=|OC|,
設(shè)|OA|=|OC|=r(r>1),得A、C兩點是圓x2+y2=r2
與橢圓W:
x2
4
+y2=1
的公共點,解之得
3x2
4
=r2-1
設(shè)A、C兩點橫坐標分別為x1、x2,可得A、C兩點的橫坐標滿足
x1=x2=
2
3
3
r2-1
,或x1=
2
3
3
r2-1
且x2=-
2
3
3
r2-1
,
①當x1=x2=
2
3
3
r2-1
時,可得若四邊形OABC為菱形,則B點必定是右頂點(2,0);
②若x1=
2
3
3
r2-1
且x2=-
2
3
3
r2-1
,則x1+x2=0,
可得AC的中點必定是原點O,因此A、O、C共線,可得不存在滿足條件的菱形OABC
綜上所述,可得當點B不是W的頂點時,四邊形OABC不可能為菱形.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A、B、C是橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點,其中點A的坐標為(2
3
,0)
,BC過橢圓M的中心,且
AC
BC
=0,|
BC
|=2|
AC
|

(1)求橢圓M的方程;
(2)過點(0,t)的直線l(斜率存在時)與橢圓M交于兩點P、Q,設(shè)D為橢圓M與y軸負半軸的交點,且|
DP
|=|
DQ
|
,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點,其中點A的坐標為(2
3
,0),BC
過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求點C的坐標及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
PQ
AB
是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C是橢圓m:
x2
a2
+
y2
b2
=1(a>b>0)上的三點,其中點A的坐標為(2
3
,0),BC過橢圓m的中心,且
AC
BC
=0
,且|
BC
|=2|
AC
|.
(1)求橢圓m的方程;
(2)過點M(0,t)的直線l(斜率存在時)與橢圓m交于兩點P,Q,設(shè)D為橢圓m與y軸負半軸的交點,且|
DP
|=|
DQ
|.求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知A、B、C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上的三點,,BC過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•北京)已知A,B,C是橢圓W:
x24
+y2=1
上的三個點,O是坐標原點.
(Ⅰ)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(Ⅱ)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

同步練習冊答案