【題目】已知是實系數(shù)一元二次方程的虛根,記它在直角坐標平面上的對應點位.
(1)若在直線上,求證:在圓:上;
(2)給定圓,則存在唯一的線段滿足:
①若在圓上,則在線段上;
②若是線段上一點(非端點),則在圓上,寫出線段的表達式,并說明理由;
(3)由(2)知線段與圓之間確定了一種對應關(guān)系,通過這種對應關(guān)系的研究,填寫表一(表中是(1)中圓的對應線段).
表一:
線段與線段的關(guān)系 | 的取值或表達式 |
所在直線平行于所在直線 | |
所在直線平分線段 | |
線段與線段長度相等 |
【答案】(1)見解析;(2)線段為:.理由見解析;(3)見解析.
【解析】
(1)由,求出坐標,代入圓方程驗證即可證;
(2)當,即時,求出坐標,代入圓方程,可得關(guān)系式,從而知所滿足的直線方程,求出的取值范圍,即得線段方程,反之在線段上,檢驗在圓上即可;
(3)根據(jù)兩直線的位置關(guān)系求解后可填表.
(1)由題意,解方程,得,
點或,
∵,
∴在圓上;
(2)當,即時,解方程得,
所以或,
由題意,整理得,
∵,,∴,
線段為:.
若點在線段:上(非端點),則實系數(shù)方程為:,此時,且或在圓上.
(3)由以上解題過程知,
若所在直線平行于所在直線,則,∴;
若所在直線平分線段,線段中點為,所以,即;
線段與線段長度相等,∴,即.
表一:
線段與線段的關(guān)系 | 的取值或表達式 |
所在直線平行于所在直線 | |
所在直線平分線段 | |
線段與線段長度相等 | . |
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(個) | 22 | 25 | 29 | 26 | 16 | 12 |
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考數(shù)據(jù),)
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為研究女高中生身高與體重之間的關(guān)系,一調(diào)查機構(gòu)從某中學中隨機選取8名女高中生,其身高和體重數(shù)據(jù)如下表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 164 | 160 | 158 | 172 | 162 | 164 | 174 | 166 |
體重 | 60 | 46 | 43 | 48 | 48 | 50 | 61 | 52 |
該調(diào)查機構(gòu)繪制出該組數(shù)據(jù)的散點圖后分析發(fā)現(xiàn),女高中生的身高與體重之間有較強的線性相關(guān)關(guān)系.
(1)調(diào)查員甲計算得出該組數(shù)據(jù)的線性回歸方程為,請你據(jù)此預報一名身高為的女高中生的體重;
(2)調(diào)查員乙仔細觀察散點圖發(fā)現(xiàn),這8名同學中,編號為1和4的兩名同學對應的點與其他同學對應的點偏差太大,于是提出這樣的數(shù)據(jù)應剔除,請你按照這名調(diào)查人員的想法重新計算線性回歸話中,并據(jù)此預報一名身高為的女高中生的體重;
(3)請你分析一下,甲和乙誰的模型得到的預測值更可靠?說明理由.
附:對于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘法估計分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國居民人均消費及其構(gòu)成,現(xiàn)有如下說法:
①2018年全年全國居民人均可支配收入的平均數(shù)的增長率低于2017年;
②2018年全年全國居民人均可支配收入的中位數(shù)約是平均數(shù)的;
③2018年全年全國居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費的.
則上述說法中,正確的個數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的參數(shù)方程;
(2)若曲線與曲線,在第一象限分別交于兩點,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直平行六面體的所有棱長都為2,,過體對角線的截面S與棱和分別交于點E、F,給出下列命題中:
①四邊形的面積最小值為;
②直線EF與平面所成角的最大值為;
③四棱錐的體積為定值;
④點到截面S的距離的最小值為.
其中,所有真命題的序號為( )
A.①②③B.①③④C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國居民人均消費及其構(gòu)成,現(xiàn)有如下說法:
①2018年全年全國居民人均可支配收入的平均數(shù)的增長率低于2017年;
②2018年全年全國居民人均可支配收入的中位數(shù)約是平均數(shù)的;
③2018年全年全國居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費的.
則上述說法中,正確的個數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,,分別是,的中點.
(Ⅰ)證明:平面;
(Ⅱ)若這個三棱柱的底面是邊長為2的等邊三角形,側(cè)面都是正方形,求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個總體容量為60,其中的個體編號為00,01,02,…,59.現(xiàn)需從中抽取一個容量為7的樣本,請從隨機數(shù)表的倒數(shù)第5行(下表為隨機數(shù)表的最后5行)第11~12列的18開始,依次向下,到最后一行后向右,直到取足樣本,則抽取樣本的號碼是_____________.
95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95
38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80
82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50
24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49
96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com