【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù)),,.

(1)記函數(shù),且,求的單調(diào)增區(qū)間;

(2)若對(duì)任意,,均有成立,求實(shí)數(shù)的取值范圍.

【答案】(1),;(2)

【解析】試題分析:(1)求單調(diào)區(qū)間的方法是求出的解,確定(或)的取值區(qū)間,即函數(shù)的單調(diào)區(qū)間,此可用列表方法得出(同時(shí)可得出極值);(2)本小題不等式或有絕對(duì)值符號(hào),有兩個(gè)參數(shù),由于函數(shù)是增函數(shù),因此設(shè),則有,原問(wèn)題等價(jià)于恒成立,

分兩個(gè)問(wèn)題,恒成立和恒成立,前面轉(zhuǎn)化為,可以考慮函數(shù)上是單調(diào)遞增的,后面一個(gè)轉(zhuǎn)化為,可以考慮函數(shù)上是單調(diào)遞增的.

試題解析:(1,

,

列表如下:(,















極大值


極小值


的單調(diào)增區(qū)間為:,減區(qū)間為;

2)設(shè),是單調(diào)增函數(shù),,

;

得:,

即函數(shù)上單調(diào)遞增,

上恒成立,

上恒成立;

,,

時(shí),時(shí),;

;

得:,

即函數(shù)上單調(diào)遞增,

上恒成立,

上恒成立;

函數(shù)上單調(diào)遞減,當(dāng)時(shí),,

,

綜上所述,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1,F2分別為雙曲線的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn),若的最小值為8a,則雙曲線的離心率e的取值范圍是(   )

A. (1,+∞) B. (1,2] C. (1,] D. (1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中, , 是自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè)函數(shù),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寶寶的健康成長(zhǎng)是媽媽們最關(guān)心的問(wèn)題,父母親為嬰兒選擇什么品牌的奶粉一直以來(lái)都是育嬰中的一個(gè)重要話題,為了解過(guò)程奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個(gè)品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對(duì)該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名;

(2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷量(僅指這5個(gè)品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號(hào)內(nèi);

(3)試以(2)中的百分比作為概率,若隨機(jī)選取2名購(gòu)買(mǎi)這5個(gè)品牌中任意1個(gè)品牌的消費(fèi)者進(jìn)行采訪,記為被采訪中購(gòu)買(mǎi)飛鶴奶粉的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱臺(tái)中, 分別是棱長(zhǎng)為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點(diǎn), , ).

(1)設(shè)中點(diǎn)為 ,求證: 平面;

(2)若到平面的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知在平面直角坐標(biāo)系,的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過(guò)點(diǎn)的圓心.

(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;

(2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)寫(xiě)出的極坐標(biāo)方程,并將化為普通方程;

(2)若直線的極坐標(biāo)方程為相交于兩點(diǎn),

的面積(為圓的圓心).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為8,面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線的方程為,求證:直線與橢圓有且只有一個(gè)交點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案