分析 (1)利用導數(shù)的幾何意義即可求出曲線y=g(x)在點(0,g(0))處的切線方程;
(2)構(gòu)造函數(shù)H(x)=g(x)-xf(x),$x∈[{\frac{π}{4},\frac{π}{2}}]$;利用導數(shù)判斷函數(shù)的單調(diào)性,
根據(jù)根的存在性定理即可判斷函數(shù)H(x)在$[{\frac{π}{4},\frac{π}{2}}]$上零點的個數(shù).
解答 解:(1)由題意得,f(x)=sinx,g(x)=exsinx,
∴g(0)=e0sin0=0;
g'(x)=ex(cosx+sinx),∴g'(0)=1;
故曲線y=g(x)在點(0,g(0))處的切線方程為y=x;
(2)設(shè)H(x)=g(x)-xf(x),$x∈[{\frac{π}{4},\frac{π}{2}}]$;
則當$x∈[{\frac{π}{4},\frac{π}{2}}]$時,
H'(x)=ex(cosx+sinx)-sinx-xcosx=(ex-x)cosx-(ex-1)sinx,
當$x=\frac{π}{2}$,顯然有$H'({\frac{π}{2}})<0$;
當$x∈[{\frac{π}{4},\frac{π}{2}})$時,由$\frac{sinx}{cosx}=tanx≥1,\frac{{{e^x}-x}}{{{e^x}+1}}=1-\frac{1+x}{{{e^x}+1}}<1$,
即有$\frac{sinx}{cosx}>\frac{{{e^x}-x}}{{{e^x}+1}}$,
即有H'(x)<0,
所以當$x∈[{\frac{π}{4},\frac{π}{2}}]$時,總有H'(x)<0,
故H(x)在$[{\frac{π}{4},\frac{π}{2}}]$上單調(diào)遞減,
故函數(shù)H(x)在$[{\frac{π}{4},\frac{π}{2}}]$上至多有一個零點;
又$H({\frac{π}{4}})=\frac{{\sqrt{2}}}{2}({{e^{\frac{π}{4}}}-\frac{π}{4}})>0$,$H({\frac{π}{2}})=-\frac{π}{2}<0$;
且H(x)在$[{\frac{π}{4},\frac{π}{2}}]$上是連續(xù)不斷的,
故函數(shù)H(x)在$[{\frac{π}{4},\frac{π}{2}}]$上有且只有一個零點.
點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性與最值問題,也考查了導數(shù)的幾何意義與應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p為假 | B. | p∧q為假 | C. | p∨q為真 | D. | ¬q為真 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com