分析 由約束條件作出可行域,利用$\frac{y+1}{x-4}$的幾何意義,即可行域內的動點(x,y)與定點P(4,-1)連線的斜率求得答案.
解答 解:由約束條件$\left\{{\begin{array}{l}{x+y-7≤0}\\{x-3y+1≤0}\\{3x-y-5≥0}\end{array}}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-3y+1=0}\\{x+y-7=0}\end{array}\right.$,解得A(5,2),
聯(lián)立$\left\{\begin{array}{l}{x-3y+1=0}\\{3x-y-5=0}\end{array}\right.$,解得C(2,1),
$\frac{y+1}{x-4}$的幾何意義為可行域內的動點(x,y)與定點P(4,-1)連線的斜率,
∵${k}_{PA}=\frac{-1-2}{4-5}=3,{k}_{PC}=\frac{-1-1}{4-2}=-1$.
∴$\frac{y+1}{x-4}$的取值范圍是(-∞,-1]∪[3,+∞).
故答案為:(-∞,-1]∪[3,+∞).
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2≤x<1} | B. | {x|-2≤x≤1} | C. | {x|x<-2} | D. | {x|x≤2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅ | B. | {x|3<x<4} | C. | {x|-2<x<1} | D. | {x|x>4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-log2x | B. | y=x3 | C. | y=3x | D. | y=$\frac{1}{x}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com