等差數(shù)列{an}中,a9+a12=15,S20=( )
A.120
B.150
C.180
D.200
【答案】分析:首先根據(jù)等差數(shù)列的性質(zhì):若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq可得a1+a20=15,結(jié)合等差數(shù)列的前n項(xiàng)和的公式,可得答案.
解答:解:在等差數(shù)列{an}中,若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq
所以a9+a12=a1+a20=15,
由等差數(shù)列的前n項(xiàng)和的公式可得:,
所以S20==150.
故選B.
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握等差數(shù)列的有關(guān)性質(zhì)以及等差數(shù)列的前n項(xiàng)和的表達(dá)式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊(cè)答案