已知橢圓的兩個焦點分別為,且,點在橢圓上,且的周長為6.
(I)求橢圓的方程;
(II)若點的坐標為,不過原點的直線與橢圓相交于兩點,設線段的中點為,點到直線的距離為,且三點共線.求的最大值.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)根據(jù)題中條件確定、、的值,進而確定橢圓的方程;(Ⅱ)對直線的斜率存在與否進行分類討論,并在相應的情況下求出的最大值,并作出比較,尤其是在處理直線的斜率存在,一般將直線的方程設為,借助韋達定理,確定之間的關系,然后將化為自變量為的函數(shù),借助函數(shù)的最值來求取,但要注意相應自變量的取值范圍.
試題解析:解:(I)由已知得,
解得,又,
所以橢圓的方程為.
3分
(II)設.
當直線與軸垂直時,由橢圓的對稱性可知,點軸上,且與點不重合,
顯然三點不共線,不符合題設條件.
故可設直線的方程為.
消去整理得
.                ①
,
所以點的坐標為.
因為三點共線,所以,
因為,所以,
此時方程①為,則,
所以,
,
所以,
故當時,的最大值為.[來源:學科網(wǎng)ZXXK]
13分
考點:橢圓的方程、韋達定理、點到直線的距離

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的長軸兩端點分別為是橢圓上的動點,以為一邊在軸下方作矩形,使于點,于點

(Ⅰ)如圖(1),若,且為橢圓上頂點時,的面積為12,點到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的離心率,是其左右焦點,點是直線(其中)上一點,且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點,滿足,求為坐標原點)面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,點為動點,分別為橢圓的左右焦點.已知△為等腰三角形.(1)求橢圓的離心率;(2)設直線與橢圓相交于兩點,是直線上的點,滿足,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線兩不同點,交軸于點,已知,求的值;
(3)直線交橢圓兩不同點,軸的射影分別為,,若點滿足,證明:點在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

秒“嫦娥二號”探月衛(wèi)星由長征三號丙運載火箭送入近地點高度約公里、遠地點高度約萬公里的直接奔月橢圓(地球球心為一個焦點)軌道Ⅰ飛行。當衛(wèi)星到達月球附近的特定位置時,實施近月制動及軌道調整,衛(wèi)星變軌進入遠月面公里、近月面公里(月球球心為一個焦點)的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機變軌進入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開展相關技術試驗和科學探測。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大小;
(Ⅱ)以為右焦點,求橢圓軌道Ⅱ的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過點作直線與雙曲線相交于兩點、,且為線段的中點,求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點在軸上,且過點.

(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

查看答案和解析>>

同步練習冊答案