精英家教網(wǎng)如圖,點F為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點,若橢圓上存在一點P,滿足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點,則該橢圓的離心率為(  )
A、
2
3
B、
5
3
C、
2
2
D、
5
9
分析:設(shè)線段PF的中點為M,另一個焦點F′,利用OM是△FPF′的中位線,以及橢圓的定義求出直角三角形OMF的三邊之長,使用勾股定理求離心率.
解答:解:設(shè)線段PF的中點為M,另一個焦點F′,由題意知,OM=b,又OM是△FPF′的中位線,
∴OM=
1
2
PF′=b,PF′=2b,由橢圓的定義知  PF=2a-PF′=2a-2b,
又 MF=
1
2
PF=
1
2
(2a-2b)=a-b,又OF=c,
直角三角形OMF中,由勾股定理得:(a-b)2+b2=c2,又a2-b2=c2
可求得離心率 e=
c
a
=
5
3
,故答案選 B.
點評:本題考查橢圓的定義,橢圓上任一點到兩個焦點的距離之和等于常數(shù)2a.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓O:x2+y2=2交x軸于A,B兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為
2
2
的橢圓,點F為其右焦點.過原點O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓C:x2+
y2
a2
=1(a>1)的離心率為e,點F為其下焦點,點A為其上頂點,過F的直線l:y=mx-c(其中c=
a2-1
與橢圓C相交于P,Q兩點,且滿足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)試用a表示m2
(2)求e的最大值;
(3)若e∈(
1
3
,
1
2
),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知:橢圓M的中心為O,長軸的兩個端點為A、B,右焦點為F,AF=5BF.若橢圓M經(jīng)過點C,C在AB上的射影為F,且△ABC的面積為5.
(Ⅰ)求橢圓M的方程;
(Ⅱ)已知圓O:x2+y2=1,直線l:mx+ny=1,試證明:當(dāng)點P(m,n)在橢圓M上運動時,直線l與圓O恒相交;并求直線l被圓O截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓Ox2+y2=2交x軸于A,B兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為的橢圓,點F為其右焦點.

過原點O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點Q

(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)證明:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且()p2=m,m∈[,],求(1)中切點T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點的橢圓恰好過點F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且()p2=m,m∈[,],求直線PQ的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案