設(shè)函數(shù)f(x)=cos+2cos2,x∈R.

(1)求f(x)的值域;

(2)記△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若f(B)=1,b=1,c=,求a的值.

 

(1)[0,2] (2)1或2

【解析】(1)f(x)=cos xcos -sin xsin +cos x+1

=-cos x-sin x+cos x+1

cos x-sin x+1

=sin+1,

因此f(x)的值域?yàn)閇0,2].

(2)由f(B)=1得sin+1=1,

即sin=0,又因0<B<π,

故B=

方法一 由余弦定理b2=a2+c2-2accos B,

得a2-3a+2=0,解得a=1或2.

方法二 由正弦定理,得

sin C=,C=

當(dāng)C=時(shí),A=,

從而a==2;

當(dāng)C=時(shí),A=

又B=,

從而a=b=1.

故a的值為1或2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(六)(解析版) 題型:解答題

已知函數(shù)f(x)=aln x-ax-3(a∈R).

(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f′(x)是f(x)的導(dǎo)數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;

(3)求證:×…×<(n≥2,n∈N*).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:選擇題

設(shè){an}是等比數(shù)列,則“a1<a2<a3”是“數(shù)列{an}為遞增數(shù)列”的(  )

A.充分而不必要條件 B.必要而不充分條件

C.充分必要條件 D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(二)(解析版) 題型:選擇題

設(shè)向量a=(1,x-1),b=(x+1,3),則“x=2”是“a∥b”的(  )

A.充分但不必要條件

B.必要但不充分條件

C.充要條件

D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:解答題

已知函數(shù)f(x)=ln x-

(1)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;

(2)f(x)在[1,e]上的最小值為,求實(shí)數(shù)a的值;

(3)試求實(shí)數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:選擇題

已知函數(shù)y=f(x)是定義在R上且以3為周期的奇函數(shù),當(dāng)x∈時(shí),f(x)=ln(x2-x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)為(  )

A.3 B.5 C.7 D.9

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:選擇題

實(shí)數(shù)x,y滿足,若目標(biāo)函數(shù)z=x+y取得最大值4,則實(shí)數(shù)a的值為(  )

A.4 B.3 C.2 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題

先作函數(shù)y=lg的圖象關(guān)于原點(diǎn)對(duì)稱的圖象,再將所得圖象向右平移一個(gè)單位得圖象C1,函數(shù)y=f(x)的圖象C2與C1關(guān)于直線y=x對(duì)稱,則函數(shù)y=f(x)的解析式為(  )

A.y=10x B.y=10x-2

C.y=lg x D.y=lg(x-2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:填空題

(2014·孝感模擬)一對(duì)年輕夫婦和其兩歲的孩子做游戲,讓孩子把分別寫有“1”“3”“1”“4”的四張卡片隨機(jī)排成一行,若卡片按從左到右的順序排成“1314”,則孩子會(huì)得到父母的獎(jiǎng)勵(lì),那么孩子得到獎(jiǎng)勵(lì)的概率為_(kāi)_________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案