19.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.若b=3,c=2$\sqrt{3}$,A=30°,求角B、C及邊a的值.

分析 由已知利用余弦定理可求a,進(jìn)而利用正弦定理可求sinB,sinC的值,結(jié)合大邊對大角,特殊角的三角函數(shù)值,三角形內(nèi)角和定理即可得解.

解答 解:∵b=3,c=2$\sqrt{3}$,A=30°,
∴由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{9+12-2×3×2\sqrt{3}×\frac{\sqrt{3}}{2}}$=$\sqrt{3}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{3×\frac{1}{2}}{\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,sinC=$\frac{csinA}{a}$=$\frac{\sqrt{3}×\frac{1}{2}}{\sqrt{3}}$=$\frac{1}{2}$,
∵a<b<c,可得:B為銳角,B=60°,
∴C=180°-A-B=90°.

點(diǎn)評 本題主要考查了余弦定理,正弦定理,大邊對大角,特殊角的三角函數(shù)值,三角形內(nèi)角和定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)直線l與拋物線x2=4y相交于A,B兩點(diǎn),與圓x2+(y-5)2=r2(r>0)相切于點(diǎn)M,且M為線段AB中點(diǎn),若這樣的直線l恰有4條,則r的取值范圍是( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=ln(ex-x+a)(e為自然對數(shù)的底數(shù))的值域是正實(shí)數(shù)集R+,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-1)B.(0,1]C.(-1,0]D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=x-2是(  )
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù) f(x)=log2(1+x)-log2(1-x).
(1)求 f(x)的定義域;
(2)判斷 f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.圓C:x2+y2-2x+2y-2=0的圓心坐標(biāo)為( 。
A.(1,1)B.(1,-1)C.(-1,-1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)=\frac{1}{{\sqrt{4-x}}}$的定義域是( 。
A.(-∞,4)B.(-∞,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{x+1}{x}$的單調(diào)遞減區(qū)間為(-∞,0),(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)是R上的奇函數(shù),且對任意實(shí)數(shù)x滿足f(x)+f(x+$\frac{3}{2}$)=0,若f(1)>1,f(2)=a,則實(shí)數(shù)a的取值范圍是a<-1.

查看答案和解析>>

同步練習(xí)冊答案