【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn= an+n﹣3.
(1)求證:數(shù)列{an﹣1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)令cn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),對(duì)任意n∈N*, + +…+ <k都成立,求k的最小值.

【答案】
(1)解:

①﹣②,得 ,即an=3an1﹣2,

∴an﹣1=3(an1﹣1),即

可得,a1=4

∴{an﹣1}是以3為首項(xiàng),3為公比的等比數(shù)列,則 ,


(2)解:log3(an﹣1)=n,

,

恒成立,

∴k≥2,即kmin=2


【解析】(1)根據(jù)數(shù)列遞推公式得到an=3an1﹣2,即可得到{an﹣1}是以3為首項(xiàng),3為公比的等比數(shù)列,問(wèn)題得以解決;(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)和等差數(shù)列的求和公式,得到cn= ,再根據(jù)裂項(xiàng)求和恒成立得到k≥2,問(wèn)題得以解決.
【考點(diǎn)精析】掌握等比數(shù)列的通項(xiàng)公式(及其變式)是解答本題的根本,需要知道通項(xiàng)公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一組數(shù)據(jù)按從小到大順序排列,得到﹣1,0,4,x,7,14中位數(shù)為5,則這組數(shù)據(jù)的平均數(shù)為 , 方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知左、右焦點(diǎn)分別為的橢圓與直線相交于兩點(diǎn),使得四邊形為面積等于的矩形.

1求橢圓的方程;

2過(guò)橢圓上一動(dòng)點(diǎn)(不在軸上)作圓的兩條切線,切點(diǎn)分別為,直線與橢圓交于兩點(diǎn), 為坐標(biāo)原點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓C滿足三個(gè)條件①過(guò)原點(diǎn);②圓心在y=x上;③截y軸所得的弦長(zhǎng)為4,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bsinA= acosB.
(1)求角B的大;
(2)若b=3,sinC=2sinA,分別求a和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出的關(guān)系式中正確的個(gè)數(shù)是(
=
=
2=| |2
④( =
⑤| |≤
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項(xiàng)和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;

(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案